Abstract
Cancer cachexia is a multifactorial syndrome characterized by persistent muscle atrophy, functional impairment, anorexia, weakness, fatigue, anemia, and reduced antitumor treatment tolerance. As a result, the patients’ quality of life suffers. Cachexia is responsible for approximately 22-25 percent of cancer deaths. This article discusses the signs and symptoms of cancer cachexia, as well as the mediators, treatment options, and future prospects for 3D bioprinting. Protein breakdown, inflammatory cytokines activation, and mitochondrial alteration are all factors that contribute to cachexia, according to research. Cachexia has eluded standard treatment despite the use of proper nutrition, physical activity, anti-inflammatory drugs, chemotherapy, and grafting attempts. By attempting to fabricate 3D constructs that mimic native muscle tissues, 3D bioprinting shows a lot of promise when compared to traditional methods. Some 3D bioprinting techniques have been discussed in this review, along with their benefits and drawbacks, as well as their achievements and challenges in in-vivo applications. Muscle atrophy can be repaired with neural integration or muscle-tendon units. However, properly bio-printing these complex muscles remains a challenge. Although new bio-inks or 3D printers can be used to fabricate high-resolution constructs, progress can be made. This review study uses secondary data to show why 3D bioprinting could be a viable alternative to treating cachexia.
License
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Article Type: Review Article
J CLIN EXP INVEST, Volume 12, Issue 4, December 2021, Article No: em00783
https://doi.org/10.29333/jcei/11289
Publication date: 21 Oct 2021
Article Views: 1433
Article Downloads: 514
Open Access References How to cite this articleReferences
- Mattox TW. Cancer Cachexia: Cause, Diagnosis, and Treatment. Nutr Clin Pract. 2017; 32(5): 599-606. doi: 10.1177/0884533617722986.
- Muscaritoli M, Bossola M, Aversa Z, Bellantone R, Rossi Fanelli F. Prevention and treatment of cancer cachexia: New insights into an old problem. Eur J Cancer. 2006; 42(1): 31-41. doi: 10.1016/j.ejca.2005.07.026.
- Inui A. Cancer Anorexia-Cachexia Syndrome: Current Issues in Research and Management. CA Cancer J Clin. 2002;52(2):72-91. doi: 10.3322/canjclin.52.2.72.
- Barreto R, Mandili G, Witzmann FA, Novelli F, Zimmers TA, Bonetto A. Cancer and chemotherapy contribute to muscle loss by activating common signaling pathways. Front Physiol. 2016; 7(OCT): 1-13. doi: 10.3389/fphys.2016.00472.
- Tisdale MJ. Mechanisms of cancer cachexia. Physiol Rev. 2009; 89(2): 381-410. doi: 10.1152/physrev.00016.2008.
- Tedesco FS, Dellavalle A, Diaz-manera J, Messina G, Cossu G. Repairing skeletal muscle: Regenerative potential of skeletal muscle stem cells. J Clin Invest. 2010; 120(1): 11-9. doi: 10.1172/JCI40373.
- Penna F, Ballarò R, Beltrà M, De Lucia S, Castillo LG, Costelli P. The skeletal muscle as an active player against cancer cachexia. Front Physiol. 2019; 10(FEB). doi: 10.3389/fphys.2019.00041.
- Bruggeman AR, Kamal AH, LeBlanc TW, Ma JD, Baracos VE, Roeland EJ. Cancer cachexia: Beyond weight loss. J Oncol Pract. 2016; 12(11): 1163-71. doi: 10.1200/JOP.2016.016832.
- Burckart K, Beca S, Urban RJ, Sheffield-Moore M. Pathogenesis of muscle wasting in cancer cachexia: Targeted anabolic and anticatabolic therapies. Curr Opin Clin Nutr Metab Care. 2010; 13(4): 410-6. doi: 10.1097/MCO.0b013e328339fdd2.
- Muscaritoli M, Molfino A, Gioia G, Laviano A, Fanelli FR. The “parallel pathway”: A novel nutritional and metabolic approach to cancer patients. Intern Emerg Med. 2011; 6(2): 105-12. doi: 10.1007/s11739-010-0426-1.
- Reynolds J V., Donohoe CL, Ryan AM. Cancer cachexia: Mechanisms and clinical implications. Gastroenterol Res Pract. 2011; 2011. doi: 10.1155/2011/601434.
- Prado CM, Sawyer MB, Ghosh S, Lieffers JR, Esfandiari N, Antoun S, et al. Central tenet of cancer cachexia therapy: Do patients with advanced cancer have exploitable anabolic potential? Am J Clin Nutr. 2013; 98(4): 1012-9. doi: 10.3945/ajcn.113.060228.
- Fearon K, Strasser F, Anker SD, Bosaeus I, Bruera E, Fainsinger RL, et al. Definition and classification of cancer cachexia: An international consensus. Lancet Oncol [Internet]. 2011; 12(5): 489-95. doi: 10.1016/S1470-2045(10)70218-7.
- Tabebordbar M, Wang ET, Wagers AJ. Skeletal muscle degenerative diseases and strategies for therapeutic muscle repair. Annu Rev Pathol Mech Dis. 2013; 8: 441-75. doi: 10.1146/annurev-pathol-011811-132450.
- Hong N, Yang GH, Lee JH, Kim GH. 3D bioprinting and its in vivo applications. J Biomed Mater Res - Part B Appl Biomater. 2018; 106(1): 444-59. doi: 10.1002/jbm.b.33826.
- Cui X, Boland T, D.D’Lima D, K. Lotz M. Thermal Inkjet Printing in Tissue Engineering and Regenerative Medicine. Recent Pat Drug Deliv Formul. 2012; 6(2): 149-55. doi: 10.2174/187221112800672949.
- Ozbolat IT, Yu Y. Bioprinting toward organ fabrication: Challenges and future trends. IEEE Trans Biomed Eng. 2015; 60(November): 691-9. doi: 10.1109/TBME.2013.2243912.
- Inaba S, Hinohara A, Tachibana M, Tsujikawa K, Fukada S. Muscle regeneration is disrupted by cancer cachexia without loss of muscle stem cell potential. PLoS One. 2018; 13(10): 1-15. doi: 10.1371/journal.pone.0205467.
- Penna F, Ballarò R, Beltrá M, De Lucia S, Costelli P. Modulating metabolism to improve cancer-induced muscle wasting. Oxid Med Cell Longev. 2018; 2018. doi: 10.1155/2018/7153610.
- Argilés JM, Busquets S, Stemmler B, López-Soriano FJ. Cancer cachexia: Understanding the molecular basis. Nat Rev Cancer [Internet]. 2014; 14(11): 754-62. doi: 10.1038/nrc3829.
- Martignoni ME, Kunze P, Hildebrandt W, Künzli B, Berberat P, Giese T, et al. Role of mononuclear cells and inflammatory cytokines in pancreatic cancer-related cachexia. Clin Cancer Res. 2005; 11(16): 5802-8. doi: 10.1158/1078-0432.CCR-05-0185.
- Cuenca AG, Cuenca AL, Winfield RD, Joiner DN, Gentile L, Delano MJ, et al. Novel role for tumor-induced expansion of myeloid-derived cells in cancer cachexia. J Immunol. 2014; 192(12): 6111-9. doi: 10.4049/jimmunol.1302895.
- Fearon KCH, Glass DJ, Guttridge DC. Cancer cachexia: Mediators, signaling, and metabolic pathways. Cell Metab. 2012; 16(2): 153-66. doi: 10.1016/j.cmet.2012.06.011.
- Petruzzelli M, Wagner EF. Mechanisms of metabolic dysfunction in cancer-associated cachexia. Genes Dev. 2016; 30(5): 489-501. doi: 10.1101/gad.276733.115.
- Cohen S, Nathan JA, Goldberg AL. Muscle wasting in disease: Molecular mechanisms and promising therapies. Nat Rev Drug Discov [Internet]. 2014; 14(1): 58-74. doi: 10.1038/nrd4467.
- Schmidt SF, Rohm M, Herzig S, Berriel Diaz M. Cancer cachexia: More than skeletal muscle wasting. Trends in Cancer [Internet]. 2018; 4(12): 849-60. doi: 10.1016/j.trecan.2018.10.001.
- Jones JE, Cadena SM, Gong C, Wang X, Chen Z, Wang SX, et al. Supraphysiologic administration of GDF11 induces cachexia in part by upregulating GDF15. Cell Rep [Internet]. 2018; 22(6): 1522-30. doi: 10.1016/j.celrep.2018.01.044.
- Yang L, Chang CC, Sun Z, Madsen D, Zhu H, Padkjær SB, et al. GFRAL is the receptor for GDF15 and is required for the anti-obesity effects of the ligand. Nat Med. 2017; 23(10): 1158-66. doi: 10.1038/nm.4394.
- Baracos VE, Martin L, Korc M, Guttridge DC, Fearon KCH. Cancer-associated cachexia. Nat Rev Dis Prim [Internet]. 2018; 4: 1-18. doi: 10.1038/nrdp.2017.105.
- Baracos VE, Mazurak VC, Bhullar AS. Cancer cachexia is defined by an ongoing loss of skeletal muscle mass. Ann Palliat Med. 2019; 8(1): 3-12. doi: 10.21037/apm.2018.12.01.
- Antoun S, Baracos VE, Birdsell L, Escudier B, Sawyer MB. Low body mass index and sarcopenia associated with dose-limiting toxicity of sorafenib in patients with renal cell carcinoma. Ann Oncol. 2010; 21(8): 1594-8. doi: 10.1093/annonc/mdp605.
- Murphy KT. The pathogenesis and treatment of cardiac atrophy in cancer cachexia. Am J Physiol - Hear Circ Physiol. 2016; 310(4): H466-77. doi: 10.1152/ajpheart.00720.2015.
- Von Haehling S, Ebner N, Dos Santos MR, Springer J, Anker SD. Muscle wasting and cachexia in heart failure: Mechanisms and therapies. Nat Rev Cardiol [Internet]. 2017; 14(6): 323-41. doi: 10.1038/nrcardio.2017.51.
- Friesen DE, Baracos VE, Tuszynski JA. Modeling the energetic cost of cancer as a result of altered energy metabolism: Implications for cachexia. Theor Biol Med Model [Internet]. 2015; 12(1): 1-18. doi: 10.1186/s12976-015-0015-0.
- Fearon KCH, Barber MD, Falconer JS, McMillan DC, Ross JA, Preston T. Pancreatic cancer as a model: Inflammatory mediators, acute-phase response, and cancer cachexia. World J Surg. 1999; 23(6): 584-8. doi: 10.1007/PL00012351.
- Preston T, Slater C, McMillan DC, Falconer JS, Shenkin A, Fearon KCH. Fibrinogen synthesis is elevated in fasting cancer patients with an acute phase response. J Nutr. 1998; 128(8): 1355-60. doi: 10.1093/jn/128.8.1355.
- Bonetto A, Kays JK, Parker VA, Matthews RR, Barreto R, Puppa MJ, et al. Differential bone loss in mouse models of colon cancer cachexia. Front Physiol. 2017; 7(JAN). doi: 10.3389/fphys.2016.00679.
- Choi E, Carruthers K, Zhang L, Thomas N, Battaglino RA, Morse LR, et al. Concurrent muscle and bone deterioration in a murine model of cancer cachexia. Physiol Rep. 2013; 1(6): 1-9. doi: 10.1002/phy2.144.
- Martin L, Senesse P, Gioulbasanis I, Antoun S, Bozzetti F, Deans C, et al. Diagnostic criteria for the classification of cancer-associated weight loss. J Clin Oncol. 2015; 33(1): 90-9. doi: 10.1200/JCO.2014.56.1894.
- Dewey A, Baughan C, Dean T, Higgins B, Johnson I. Eicosapentaenoic acid (EPA, an omega-3 fatty acid from fish oils) for the treatment of cancer cachexia. Cochrane Database Syst Rev. 2007; (1). doi: 10.1002/14651858.CD004597.pub2.
- Eley HL, Russell ST, Tisdale MJ. Effect of branched-chain amino acids on muscle atrophy in cancer cachexia. Biochem J. 2007; 407(1): 113-20. doi: 10.1042/BJ20070651.
- Gould DW, Lahart I, Carmichael AR, Koutedakis Y, Metsios GS. Cancer cachexia prevention via physical exercise: Molecular mechanisms. J Cachexia Sarcopenia Muscle. 2013; 4(2): 111-24. doi: 10.1007/s13539-012-0096-0.
- Snijders T, Nederveen JP, McKay BR, Joanisse S, Verdijk LB, van Loon LJC, et al. Satellite cells in human skeletal muscle plasticity. Front Physiol. 2015; 6(OCT): 1-21. doi: 10.3389/fphys.2015.00283.
- Aversa Z, Costelli P, Muscaritoli M. Cancer-induced muscle wasting: Latest findings in prevention and treatment. Ther Adv Med Oncol. 2017; 9(5): 369-82. doi: 10.1177/1758834017698643.
- Penna F, Pin F, Ballarò R, Baccino FM, Costelli P. Novel investigational drugs mimicking exercise for the treatment of cachexia. Expert Opin Investig Drugs. 2016; 25(1): 63-72. doi: 10.1517/13543784.2016.1117072.
- Argilés JM, Busquets S, López-Soriano FJ, Costelli P, Penna F. Are there any benefits of exercise training in cancer cachexia? J Cachexia Sarcopenia Muscle. 2012; 3(2): 73-6. doi: 10.1007/s13539-012-0067-5.
- Yennurajalingam S, Frisbee-Hume S, Palmer JL, Delgado-Guay MO, Bull J, Phan AT, et al. Reduction of cancer-related fatigue with dexamethasone: A double-blind, randomized, placebo-controlled trial in patients with advanced cancer. J Clin Oncol. 2013; 31(25): 3076-82. doi: 10.1200/JCO.2012.44.4661.
- Paulsen Ø, Klepstad P, Rosland JH, Aass N, Albert E, Fayers P, et al. Efficacy of methylprednisolone on pain, fatigue, and appetite loss in patients with advanced cancer using opioids: A randomized, placebo-controlled, double-blind trial. J Clin Oncol. 2014; 32(29): 3221-8. doi: 10.1200/JCO.2013.54.3926.
- Fardet L, Flahault A, Kettaneh A, Tiev KP, Généreau T, Tolédano C, et al. Corticosteroid-induced clinical adverse events: Frequency, risk factors and patient’s opinion. Br J Dermatol. 2007; 157(1): 142-8. doi: 10.1111/j.1365-2133.2007.07950.x.
- Hasselgren PO, Alamdari N, Aversa Z, Gonnella P, Smith IJ, Tizio S. Corticosteroids and muscle wasting: Role of transcription factors, nuclear cofactors, and hyperacetylation. Curr Opin Clin Nutr Metab Care. 2010; 13(4): 423-8. doi: 10.1097/MCO.0b013e32833a5107.
- Reid J, Mills M, Cantwell M, Cardwell CR, Murray LJ, Donnelly M. Thalidomide for managing cancer cachexia. Cochrane Database Syst Rev. 2012; 2012(4). doi: 10.1002/14651858.CD008664.pub2.
- Davis M, Lasheen W, Walsh D, Mahmoud F, Bicanovsky L, Lagman R. A phase II dose titration study of thalidomide for cancer-associated anorexia. J Pain Symptom Manage [Internet]. 2012; 43(1): 78-86. doi: 10.1016/j.jpainsymman.2011.03.007.
- Yennurajalingam S, Willey JS, Palmer JL, Allo J, Fabbro E Del, Cohen EN, et al. The role of thalidomide and placebo for the treatment of cancer-related anorexia-cachexia symptoms: Results of a double-blind placebo-controlled randomized study. J Palliat Med. 2012; 15(10): 1059-64. doi: 10.1089/jpm.2012.0146.
- Zhou X, Wang JL, Lu J, Song Y, Kwak KS, Jiao Q, et al. Reversal of cancer cachexia and muscle wasting by ActRIIB antagonism leads to prolonged survival. Cell [Internet]. 2010; 142(4): 531-43. doi: 10.1016/j.cell.2010.07.011.
- Benny Klimek ME, Aydogdu T, Link MJ, Pons M, Koniaris LG, Zimmers TA. Acute inhibition of myostatin-family proteins preserves skeletal muscle in mouse models of cancer cachexia. Biochem Biophys Res Commun [Internet]. 2010; 391(3): 1548-54. doi: 10.1016/j.bbrc.2009.12.123.
- Stevanovic M V., Cuéllar VG, Ghiassi A, Sharpe F. Single-stage reconstruction of elbow flexion associated with massive soft-tissue defect using the latissimus dorsi muscle bipolar rotational transfer. Plast Reconstr Surg - Glob Open. 2016; 4(9): 1-9. doi: 10.1097/GOX.0000000000001066.
- Makarewich CA, Hutchinson DT. Tendon Transfers for Combined Peripheral Nerve Injuries. Hand Clin [Internet]. 2016; 32(3): 377-87. doi: 10.1016/j.hcl.2016.03.008.
- Eckardt A, Fokas K. Microsurgical reconstruction in the head and neck region: An 18-year experience with 500 consecutive cases. J Cranio-Maxillofacial Surg. 2003; 31(4): 197-201. doi: 10.1016/S1010-5182(03)00039-8.
- Lin CH, Lin Y Te, Yeh JT, Chen CT. Free functioning muscle transfer for lower extremity posttraumatic composite structure and functional defect. Plast Reconstr Surg. 2007; 119(7): 2118-26. doi: 10.1097/01.prs.0000260595.85557.41.
- Bianchi B, Copelli C, Ferrari S, Ferri A, Sesenna E. Free flaps: Outcomes and complications in head and neck reconstructions. J Cranio-Maxillofacial Surg [Internet]. 2009; 37(8): 438-42. doi: 10.1016/j.jcms.2009.05.003.
- Liu J, Saul D, Böker KO, Ernst J, Lehman W, Schilling AF. Current Methods for Skeletal Muscle Tissue Repair and Regeneration. Biomed Res Int. 2018; 2018. doi: 10.1155/2018/1984879.
- Badylak SF, Gilbert TW. Immune response to biologic scaffold materials. Semin Immunol. 2008; 20(2): 109-16. doi: 10.1016/j.smim.2007.11.003.
- Lotze MT, Deisseroth A, Rubartelli A. Damage associated molecular pattern molecules. Clin Immunol. 2007; 124(1): 1-4. doi: 10.1016/j.clim.2007.02.006.
- Bertassoni LE, Cardoso JC, Manoharan V, Cristino AL, Bhise NS, Araujo WA, et al. Direct-write bioprinting of cell-laden methacrylated gelatin hydrogels. Biofabrication. 2014; 6(2). doi: 10.1088/1758-5082/6/2/024105.
- Kim JH, Seol YJ, Ko IK, Kang HW, Lee YK, Yoo JJ, et al. 3D bioprinted human skeletal muscle constructs for muscle function restoration. Sci Rep [Internet]. 2018; 8(1): 1-15. doi: 10.1038/s41598-018-29968-5.
- Vigodarzere GC, Mantero S. Skeletal muscle tissue engineering: Strategies for volume tric constructs. Front Physiol. 2014; 5(September): 1-14. doi: 10.3389/fphys.2014.00362.
- Juhas M, Ye J, Bursac N. Design, evaluation, and application of engineered skeletal muscle. Methods [Internet]. 2016; 99: 81-90. doi: 10.1016/j.ymeth.2015.10.002.
- Ostrovidov S, Hosseini V, Ahadian S, Fujie T, Parthiban SP, Ramalingam M, et al. Skeletal muscle tissue engineering: Methods to form skeletal myotubes and their applications. Tissue Eng - Part B Rev. 2014; 20(5): 403-36. doi: 10.1089/ten.teb.2013.0534.
- Bian W, Liau B, Badie N, Bursac N. Mesoscopic hydrogel molding to control the 3d geometry of bioartificial muscle tissues. Nat Protoc [Internet]. 2009; 4(10): 1522-34. doi: 10.1038/nprot.2009.155.
- Murphy S V., Atala A. 3D bioprinting of tissues and organs. Nat Biotechnol [Internet]. 2014; 32(8): 773-85. doi: 10.1038/nbt.2958.
- Guillotin B, Souquet A, Catros S, Duocastella M, Pippenger B, Bellance S, et al. Laser assisted bioprinting of engineered tissue with high cell density and microscale organization. Biomaterials [Internet]. 2010; 31(28): 7250-6. doi: 10.1016/j.biomaterials.2010.05.055.
- Koch L, Deiwick A, Schlie S, Michael S, Gruene M, Coger V, et al. Skin tissue generation by laser cell printing. Biotechnol Bioeng. 2012; 109(7): 1855-63. doi: 10.1002/bit.24455.
- Wang M, He J, Liu Y, Li M, Li D, Jin Z. The trend towards. Int J Bioprinting. 2015; 1(1): 15-26. doi: 10.18063/IJB.2015.01.001.
- Rider P, Kačarević ŽP, Alkildani S, Retnasingh S, Barbeck M. Bioprinting of tissue engineering scaffolds. J Tissue Eng. 2018; 9. doi: 10.1177/2041731418802090.
- Stanton MM, Samitier J, Sánchez S. Bioprinting of 3D hydrogels. Lab Chip [Internet]. 2015; 15(15): 3111-5. doi: 10.1039/C5LC90069G.
- Pires R. What exactly is Bioink? - Simply Explained. All3DP [Internet]. 2018; Available at: https://all3dp.com/2/for-ricardo-what-is-bioink-simply-explained/
- Thiele J, Ma Y, Bruekers SMC, Ma S, Huck WTS. 25th anniversary article: Designer hydrogels for cell cultures: A materials selection guide. Adv Mater. 2014; 26(1): 125-48. doi: 10.1002/adma.201302958.
- Arealis G, Nikolaou VS. Bone printing: New frontiers in the treatment of bone defects. Injury [Internet]. 2015; 46: S20-2. doi: 10.1016/S0020-1383(15)30050-4.
- Huang Y, Zhang XF, Gao G, Yonezawa T, Cui X. 3D bioprinting and the current applications in tissue engineering. Biotechnol J. 2017; 12(8). doi: 10.1002/biot.201600734.
- Billiet T, Vandenhaute M, Schelfhout J, Van Vlierberghe S, Dubruel P. A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering. Biomaterials [Internet]. 2012; 33(26): 6020-41. doi: 10.1016/j.biomaterials.2012.04.050.
- Murphy S V., Skardal A, Atala A. Evaluation of hydrogels for bio-printing applications. J Biomed Mater Res - Part A. 2013; 101 A(1): 272-84. doi: 10.1002/jbm.a.34326.
- Peppas NA, Hilt JZ, Khademhosseini A, Langer R. Hydrogels in biology and medicine: From molecular principles to bionanotechnology. Adv Mater. 2006; 18(11): 1345-60. doi: 10.1002/adma.200501612.
- Dimas LS, Buehler MJ. Modeling and additive manufacturing of bio-inspired composites with tunable fracture mechanical properties. Soft Matter. 2014; 10(25): 4436-42. doi: 10.1039/c3sm52890a.
- Gungor-Ozkerim PS, Inci I, Zhang YS, Khademhosseini A, Dokmeci MR. Bioinks for 3D bioprinting: An overview. Biomater Sci. 2018; 6(5): 915-46. doi: 10.1039/C7BM00765E.
- Evans CH, Huard J. Gene therapy approaches to regenerating the musculoskeletal system. Nat Rev Rheumatol [Internet]. 2015; 11(4): 234-42. doi: 10.1038/nrrheum.2015.28.
- Shafiee A, Atala A. Printing technologies for medical applications. Trends Mol Med. 2016; 22(3): 254-65. doi: 10.1016/j.molmed.2016.01.003.
- Kim M, Kim GH. 3D multi-layered fibrous cellulose structure using an electrohydrodynamic process for tissue engineering. J Colloid Interface Sci [Internet]. 2015; 457: 180-7. doi: 10.1016/j.jcis.2015.07.007.
- Yeo M, Kim G. Three-Dimensional Microfibrous Bundle Structure Fabricated Using an Electric Field-Assisted/Cell Printing Process for Muscle Tissue Regeneration. ACS Biomater Sci Eng. 2018; 4(2): 728-38. doi: 10.1021/acsbiomaterials.7b00983.
- Li Y, Poon CT, Li M, Lu TJ, Pingguan-Murphy B, Xu F. Chinese-noodle-inspired muscle myofiber fabrication. Adv Funct Mater. 2015; 25(37): 5999-6008. doi: 10.1002/adfm.201502018.
- Jung JW, Yi HG, Kang TY, Yong WJ, Jin S, Yun WS, et al. Evaluation of the effective diffusivity of a freeform fabricated scaffold using computational simulation. J Biomech Eng. 2013; 135(8): 1-7. doi: 10.1115/1.4024570.
- Bian W, Juhas M, Pfeiler TW, Bursac N. Local tissue geometry determines contractile force generation of engineered muscle networks. Tissue Eng - Part A. 2012; 18(9-10): 957-67. doi: 10.1089/ten.tea.2011.0313.
- Guo X, Gonzalez M, Stancescu M, Vandenburgh HH, Hickman JJ. Neuromuscular junction formation between human stem cell-derived motoneurons and human skeletal muscle in a defined system. Biomaterials [Internet]. 2011; 32(36): 9602-11. doi: 10.1016/j.biomaterials.2011.09.014.
- Choi YJ, Kim TG, Jeong J, Yi HG, Park JW, Hwang W, et al. 3D Cell Printing of Functional Skeletal Muscle Constructs Using Skeletal Muscle-Derived Bioink. Adv Healthc Mater. 2016; 5(20): 2636-45. doi: 10.1002/adhm.201600483.
- Kim JH, Ko IK, Atala A, Yoo JJ. Progressive muscle cell delivery as a solution for volumetric muscle defect repair. Sci Rep [Internet]. 2016; 6(June): 1-13. doi: 10.1038/srep38754.
- Wu X, Corona BT, Chen X, Walters TJ. A standardized rat model of volumetric muscle loss injury for the development of tissue engineering therapies. Biores Open Access. 2012; 1(6): 280-90. doi: 10.1089/biores.2012.0271.
- Novosel EC, Kleinhans C, Kluger PJ. Vascularization is the key challenge in tissue engineering. Adv Drug Deliv Rev [Internet]. 2011; 63(4): 300-11. doi: 10.1016/j.addr.2011.03.004.
- Jain RK, Au P, Tam J, Duda DG, Fukumura D. Engineering vascularized tissue. Nat Biotechnol. 2005; 23(7): 821-3. doi: 10.1038/nbt0705-821.
- Skardal A, Devarasetty M, Kang HW, Mead I, Bishop C, Shupe T, et al. A hydrogel bioink toolkit for mimicking native tissue biochemical and mechanical properties in bioprinted tissue constructs. Acta Biomater [Internet]. 2015; 25: 24-34. doi: 10.1016/j.actbio.2015.07.030.
- Laternser S, Keller H, Leupin O, Rausch M, Graf-Hausner U, Rimann M. A Novel Microplate 3D bioprinting platform for the engineering of muscle and tendon tissues. SLAS Technol. 2018; 23(6): 599-613. doi: 10.1177/2472630318776594.
- Ashby PR, Wilson SJ, Harris AJ. Formation of primary and secondary myotubes in aneural muscles in the mouse mutant peroneal muscular atrophy [Internet]. 1993. doi: 10.1006/dbio.1993.1098.
- Kang SB, Olson JL, Atala A, Yoo JJ. Functional recovery of completely denervated muscle: Implications for innervation of tissue-engineered muscle. Tissue Eng - Part A. 2012; 18(17-18): 1912-20. doi: 10.1089/ten.tea.2011.0225.
- Dhawan V, Lytle IF, Dow DE, Huang YC, Brown DL. Neurotization improves contractile forces of tissue-engineered skeletal muscle. Tissue Eng. 2007; 13(11): 2813-21. doi: 10.1089/ten.2007.0003.
- Kim JH, Kim I, Seol YJ, Ko IK, Yoo JJ, Atala A, et al. Neural cell integration into 3D bioprinted skeletal muscle constructs accelerates restoration of muscle function. Nat Commun [Internet]. 2020; 11(1): 1-12. doi: 10.1038/s41467-020-14930-9.
- Atala A, Bauer SB, Soker S, Yoo JJ, Retik AB. Tissue-engineered autologous bladders for patients needing cystoplasty. Lancet. 2006; 367(9518): 1241-6. doi: 10.1016/S0140-6736(06)68438-9.
- Macchiarini P, Jungebluth P, Go T, Asnaghi MA, Rees LE, Cogan TA, et al. Clinical transplantation of a tissue-engineered airway. Lancet [Internet]. 2008; 372(9655): 2023-30. doi: 10.1016/S0140-6736(08)61598-6.
- Seol YJ, Kang HW, Lee SJ, Atala A, Yoo JJ. Bioprinting technology and its applications. Eur J Cardio-thoracic Surg. 2014; 46(3): 342-8. doi: 10.1093/ejcts/ezu148.
- Cui X, Gao G, Qiu Y. Accelerated myotube formation using bioprinting technology for biosensor applications. Biotechnol Lett. 2013; 35(3): 315-21. doi: 10.1007/s10529-012-1087-0.
- Merceron TK, Burt M, Seol YJ, Kang HW, Lee SJ, Yoo JJ, et al. A 3D bioprinted complex structure for engineering the muscle-tendon unit. Biofabrication [Internet]. 2015; 7(3): 35003. doi: 10.1088/1758-5090/7/3/035003.
- Alraies MC, Eckman P. Adult heart transplant: Indications and outcomes. J Thorac Dis. 2014; 6(8): 1120-8.
- Manji RA, Menkis AH, Ekser B, Cooper DKC. Porcine bioprosthetic heart valves: The next generation. Am Heart J [Internet]. 2012; 164(2): 177-85. doi: 10.1016/j.ahj.2012.05.011.
- Gilon D, Cape EG, Handschumacher MD, Song JK, Solheim J, VanAuker M, et al. Effect of three-dimensional valve shape on the hemodynamics of aortic stenosis: Three-dimensional echocardiographic stereolithography and patient studies. J Am Coll Cardiol. 2002; 40(8): 1479-86. doi: 10.1016/S0735-1097(02)02269-6.
- Pati F, Jang J, Ha DH, Won Kim S, Rhie JW, Shim JH, et al. Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink. Nat Commun [Internet]. 2014; 5: 1-11. doi: 10.1038/ncomms4935.
- Ong CS, Fukunishi T, Zhang H, Huang CY, Nashed A, Blazeski A, et al. Biomaterial-Free Three-Dimensional Bioprinting of Cardiac Tissue using Human Induced Pluripotent Stem Cell Derived Cardiomyocytes. Sci Rep. 2017; 7(1): 2-12. doi: 10.1038/s41598-017-05018-4.
- Xu T, Baicu C, Aho M, Zile M, Boland T. Fabrication and characterization of bio-engineered cardiac pseudo tissues. Biofabrication. 2009; 1(3). doi: 10.1088/1758-5082/1/3/035001.
- Wang Z, Abdulla R, Parker B, Samanipour R, Ghosh S, Kim K. A simple and high-resolution stereolithography-based 3D bioprinting system using visible light crosslinkable bioinks. Biofabrication [Internet]. 2015; 7(4): 45009. doi: 10.1088/1758-5090/7/4/045009.
- Malda J, Visser J, Melchels FP, Jüngst T, Hennink WE, Dhert WJA, et al. 25th anniversary article: Engineering hydrogels for biofabrication. Adv Mater. 2013; 25(36): 5011-28. doi: 10.1002/adma.201302042.
- Gaudino M, Benedetto U, Fremes S, Biondi-Zoccai G, Sedrakyan A, Puskas JD, et al. Radial-Artery or Saphenous-Vein Grafts in Coronary-Artery Bypass Surgery. N Engl J Med. 2018; 378(22): 2069-77. doi: 10.1056/NEJMoa1716026.
- Ozbolat IT, Moncal KK, Gudapati H. Evaluation of bioprinter technologies. Addit Manuf [Internet]. 2017; 13: 179-200. doi: 10.1016/j.addma.2016.10.003.
- Aversa Z, Costelli P, Muscaritoli M, Argilés JM, Busquets S, Stemmler B, et al. Three-dimensional printing for cardiovascular diseases: From anatomical modeling to dynamic functionality. Adv Healthc Mater [Internet]. 2018; 7(1): 1-14. doi: 10.1016/j.bjps.2017.12.006.
- Cui H, Nowicki M, Fisher JP, Zhang LG. 3D bioprinting for organ regeneration. Adv Healthc Mater. 2017; 6(1). doi: 10.1002/adhm.201601118.
- Hann SY, Cui H, Esworthy T, Miao S, Zhou X, Lee S jun, et al. Recent advances in 3D printing: vascular network for tissue and organ regeneration. Transl Res [Internet]. 2019; 211: 46-63. doi: 10.1016/j.trsl.2019.04.002.
- Cui H, Zhu W, Huang Y, Liu C, Yu ZX, Nowicki M, et al. In vitro and in vivo evaluation of 3D bioprinted small-diameter vasculature with smooth muscle and endothelium. Biofabrication. 2020; 12(1). doi: 10.1088/1758-5090/ab402c.
- Shadrin IY, Khodabukus A, Bursac N. Striated muscle function, regeneration, and repair. Cell Mol Life Sci. 2016; 73(22): 4175-202. doi: 10.1007/s00018-016-2285-z.
- Fuoco C, Cannata S, Gargioli C. Could a functional artificial skeletal muscle be useful in muscle wasting? Curr Opin Clin Nutr Metab Care. 2016; 19(3): 182-7. doi: 10.1097/MCO.0000000000000271.
- Kang HW, Lee SJ, Ko IK, Kengla C, Yoo JJ, Atala A. A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat Biotechnol [Internet]. 2016; 34(3): 312-9. doi: 10.1038/nbt.3413.
- Kim JH, Yoo JJ, Lee SJ. Three-dimensional cell-based bioprinting for soft tissue regeneration. Tissue Eng Regen Med. 2016; 13(6): 647-62. doi: 10.1007/s13770-016-0133-8.
- Mironov V, Kasyanov V, Drake C, Markwald RR. Organ printing: Promises and challenges. Regen Med. 2008; 3(1): 93-103. doi: 10.2217/17460751.3.1.93.
- Zhuang P, An J, Chua CK, Tan LP. Bioprinting of 3D in vitro skeletal muscle models: A review. Mater Des [Internet]. 2020; 193: 108794. doi: 10.1016/j.matdes.2020.108794.
How to cite this article
Vancouver
Galib M, Araf Y, Naser IB, Promon SK. Prospects of 3D Bioprinting as a Possible Treatment for Cancer Cachexia. J CLIN EXP INVEST. 2021;12(4):em00783. https://doi.org/10.29333/jcei/11289
APA
Galib, M., Araf, Y., Naser, I. B., & Promon, S. K. (2021). Prospects of 3D Bioprinting as a Possible Treatment for Cancer Cachexia. Journal of Clinical and Experimental Investigations, 12(4), em00783. https://doi.org/10.29333/jcei/11289
AMA
Galib M, Araf Y, Naser IB, Promon SK. Prospects of 3D Bioprinting as a Possible Treatment for Cancer Cachexia. J CLIN EXP INVEST. 2021;12(4), em00783. https://doi.org/10.29333/jcei/11289
Chicago
Galib, Mustafa, Yusha Araf, Iftekhar Bin Naser, and Salman Khan Promon. "Prospects of 3D Bioprinting as a Possible Treatment for Cancer Cachexia". Journal of Clinical and Experimental Investigations 2021 12 no. 4 (2021): em00783. https://doi.org/10.29333/jcei/11289
Harvard
Galib, M., Araf, Y., Naser, I. B., and Promon, S. K. (2021). Prospects of 3D Bioprinting as a Possible Treatment for Cancer Cachexia. Journal of Clinical and Experimental Investigations, 12(4), em00783. https://doi.org/10.29333/jcei/11289
MLA
Galib, Mustafa et al. "Prospects of 3D Bioprinting as a Possible Treatment for Cancer Cachexia". Journal of Clinical and Experimental Investigations, vol. 12, no. 4, 2021, em00783. https://doi.org/10.29333/jcei/11289