Abstract
The recent pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread so rapidly and severely affected the people of almost every country in the world. The highly contagious nature of this virus makes it difficult to take control of the present pandemic situation. With no specific treatment available, the coronavirus disease 2019 (COVID-19) presents a threat to people of all ages including the elderly people and people with other medical complications as a vulnerable group to this disease. Better understanding of viral pathogenesis, appropriate preventive measures, early diagnosis and supportive treatments of the infected patients are now the general solutions to fight against this viral transmission. But, as an emerging disease, most about it remains still poorly understood. This article holds an overview on the origin and structure, pathogenesis, diagnosis and possible therapeutic options for the causative agent, SARS-CoV-2 and disease, COVID-19. However, few therapeutic options, laboratory experiments and other strategies proposed here need to be further clinically tested.
Keywords
License
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Article Type: Review Article
J Clin Exp Invest, Volume 11, Issue 4, December 2020, Article No: em00755
https://doi.org/10.29333/jcei/8564
Publication date: 07 Oct 2020
Article Views: 2830
Article Downloads: 939
Open Access References How to cite this articleReferences
- Moin AT, Sakib MN, Araf Y, Sarkar B, Ullah MA. Combating COVID-19 Pandemic in Bangladesh: A Memorandum from Developing Country. Preprints. 2020 May 27.
- Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet, 2020;395(10224):565-74. doi: 10.1016/S0140-6736(20)30251-8.
- Zhang L, Shen FM, Chen F, Lin Z. Origin and evolution of the 2019 novel coronavirus. Clinical infectious diseases, 2020;71(15):882-3. doi: 10.1093/cid/ciaa112.
- Perlman S. Another Decade, Another Coronavirus. N Engl J Med. 2020 Feb 20;382(8):760-2. doi: 10.1056/NEJMe2001126.
- Kelly-Cirino C, Mazzola LT, Chua A, Oxenford CJ, Van Kerkhove MD. An updated roadmap for MERS-CoV research and product development: focus on diagnostics. BMJ global health. 2019;4(Suppl 2):e001105. doi: 10.1136/bmjgh-2018-001105.
- Euro.who.int. 2020. WHO Announces COVID-19 Outbreak A Pandemic. Available at: http://www.euro.who.int/en/health-topics/health-emergencies/coronavirus-covid-19/news/news/2020/3/who-announces-covid-19-outbreak-a-pandemic (Accessed: 13 April 2020).
- Zumla A, Chan JF, Azhar EI, Hui DS, Yuen KY. Coronaviruses - drug discovery and therapeutic options. Nat Rev Drug Discov. 2016;15(5):327-47. doi: 10.1038/nrd.2015.37.
- Chan JF, Lau SK, Woo PC. The emerging novel Middle East respiratory syndrome coronavirus: the “knowns” and “unknowns”. J Formos Med Assoc. 2013;112(7):372-81. doi: 10.1016/j.jfma.2013.05.010.
- Zhu Y, Li C, Chen L, Xu B, Zhou Y, Cao L, Shang Y, Fu Z, Chen A, Deng L, Bao Y. A novel human coronavirus OC43 genotype detected in mainland China. Emerging microbes & infections. 2018 Dec 1;7(1):1-4. doi: 10.1038/s41426-018-0171-5.
- Cheng VC, Lau SK, Woo PC, Yuen KY. Severe acute respiratory syndrome coronavirus as an agent of emerging and reemerging infection. Clin Microbiol Rev. 2007;20(4):660-94. doi: 10.1128/CMR.00023-07.
- Chan JF, Lau SK, To KK, Cheng VC, Woo PC, Yuen KY. Middle East respiratory syndrome coronavirus: another zoonotic betacoronavirus causing SARS-like disease. Clin Microbiol Rev. 2015;28(2):465-522. doi: 10.1128/CMR.00102-14.
- Liu J, Zheng X, Tong Q, et al. Overlapping and discrete aspects of the pathology and pathogenesis of the emerging human pathogenic coronaviruses SARS-CoV, MERS-CoV, and 2019-nCoV. J Med Virol. 2020;92(5):491-4. doi: 10.1002/jmv.25709.
- Worldometers.info. 2020. Coronavirus Update (Live): 1,699,631 Cases And 102,734 Deaths From COVID-19 Virus Pandemic - Worldometer. Available at: https://www.worldometers.info/coronavirus/ (Accessed: 11 April 2020).
- Jiang S, Shi Z, Shu Y, Song J, Gao GF, Tan W, Guo D. A distinct name is needed for the new coronavirus. The Lancet. 2020 Mar 21;395(10228):949. doi: 10.1016/S0140-6736(20)30419-0.
- Lillie PJ, Samson A, Li A, Adams K, Capstick R, Barlow GD, Easom N, Hamilton E, Moss PJ, Evans A, Ivan M. Novel coronavirus disease (Covid-19): the first two patients in the UK with person to person transmission. Journal of Infection. 2020 Feb 28;80(5):578-606. doi: 10.1016/j.jinf.2020.02.020.
- Wu F, Zhao S, Yu B. A new coronavirus associated with human respiratory disease in China [Published on February 03, 2020]. Nature 2020;579:265-9.
- Gorbalenya AE, Baker SC, Baric RS, de Groot RJ, Drosten C, Gulyaeva AA, Haagmans BL, Lauber C, Leontovich AM, Neuman BW, Penzar D. The species severe acute respiratory syndrome related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol 5: 536–544.
- Wan Y, Shang J, Graham R, Baric RS, Li F. Receptor recognition by the novel coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS coronavirus. Journal of virology. 2020 Mar 17;94(7): e00127-20. doi: 10.1128/JVI.00127-20.
- Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell. 2020 Mar 9;181(2):281-92. doi: 10.1101/2020.02.19.956581.
- Berry JD, Jones S, Drebot MA, Andonov A, Sabara M, Yuan XY, Weingartl H, Fernando L, Marszal P, Gren J, Nicolas B. Development and characterisation of neutralising monoclonal antibody to the SARS-coronavirus. Journal of virological methods. 2004 Sep 1;120(1):87-96. doi: 10.1016/j.jviromet.2004.04.009.
- Ma J. Coronavirus: China’s first confirmed Covid-19 case traced back to November 17. South China Morning Post. 2020 Mar;13. Available at: https://www.scmp.com/news/china/society/article/3074991/coronavirus-chinas-first-confirmed-covid-19-case-traced-back
- Cohen J. Wuhan seafood market may not be source of novel virus spreading globally. Science. 2020 Jan 26;10. doi: 10.1126/science.abb0611.
- Andersen KG, Rambaut A, Lipkin WI, Holmes EC, Garry RF. The proximal origin of SARS-CoV-2. Nature Medicine. 2020 Mar 17:1-3. doi: 10.1038/s41591-020-0820-9.
- Eschner K. We’re still not sure where the Wuhan coronavirus really came from. Popular Science. Popular Science; 2020. Available at: https://www.popsci.com/story/health/wuhan-coronavirus-china-wet-market-wild-animal/
- Countries where COVID-19 has spread. Worldometer. Available at: https://www.worldometers.info/coronavirus/countries-where-coronavirus-has-spread/
- Corman VM, Landt O, Kaiser M, Molenkamp R, Meijer A, Chu DK, Bleicker T, Brünink S, Schneider J, Schmidt ML, Mulders DG. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Eurosurveillance. 2020 Jan 23;25(3):pii=2000045. doi: 10.2807/1560-7917.ES.2020.25.3.2000045.
- Ngandu T, Lehtisalo J, Solomon A, Levälahti E, Ahtiluoto S, Antikainen R, Bäckman L, Hänninen T, Jula A, Laatikainen T, Lindström J. A 2 year multidomain intervention of diet, exercise, cognitive training, and vascular risk monitoring versus control to prevent cognitive decline in at-risk elderly people (FINGER): a randomised controlled trial. The Lancet. 2015 Jun 6;385(9984):2255-63. doi: 10.1016/S0140-6736(15)60461-5.
- Yu WB, Tang GD, Zhang L, Corlett RT. Decoding the evolution and transmissions of the novel pneumonia coronavirus (SARS-CoV-2) using whole genomic data. ChinaXiv. 2020;202002:v2.
- Benvenuto D, Giovanetti M, Ciccozzi A, Spoto S, Angeletti S, Ciccozzi M. The 2019‐new coronavirus epidemic: evidence for virus evolution. Journal of Medical Virology. 2020 Apr;92(4):455-9. doi: 10.1002/jmv.25688.
- Cui J, Li F, Shi ZL. Origin and evolution of pathogenic coronaviruses. Nature reviews Microbiology. 2019 Mar;17(3):181-92. doi: 10.1038/s41579-018-0118-9.
- Bat SARS-like coronavirus isolate bat-SL-CoVZXC21, complete genome - Nucleotide - NCBI. National Center for Biotechnology Information. U.S. National Library of Medicine [cited: 12 April 2020]. Available at: https://www.ncbi.nlm.nih.gov/nuccore/MG772934
- Han Y, Du J, Su H, Zhang J, Zhu G, Zhang S, Wu Z, Jin Q. Identification of diverse bat alphacoronaviruses and betacoronaviruses in China provides new insights into the evolution and origin of coronavirus-related diseases. Frontiers in microbiology. 2019;10:1900.
- Bat coronavirus RaTG13, complete genome - Nucleotide - NCBI. National Center for Biotechnology Information. U.S. National Library of Medicine; [Cited: 12 April 2020]. Available at: https://www.ncbi.nlm.nih.gov/nuccore/1802633852
- Kolifarhood G, Aghaali M, Saadati HM, Taherpour N, Rahimi S, Izadi N, Nazari SS. Epidemiological and Clinical Aspects of COVID-19; a Narrative Review. Archives of Academic Emergency Medicine. 2020;8(1):e41.
- Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, Wang W, Song H, Huang B, Zhu N, Bi Y. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. The Lancet. 2020 Feb 22;395(10224):565-74. doi: 10.1016/S0140-6736(20)30251-8.
- Letko M, Marzi A, Munster V. Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nature microbiology. 2020 Apr;5(4):562-9. doi: 10.1038/s41564-020-0688-y.
- Sheahan T, Rockx B, Donaldson E, Sims A, Pickles R, Corti D, Baric R. Mechanisms of zoonotic severe acute respiratory syndrome coronavirus host range expansion in human airway epithelium. Journal of virology. 2008 Mar 1;82(5):2274-85. doi: 10.1128/JVI.02041-07.
- Cyranoski D. Mystery deepens over animal source of coronavirus. Nature. 2020 Mar 1;579(7797):18-9. doi: 10.1038/d41586-020-00548-w.
- Xiao K, Zhai J, Feng Y, Zhou N, Zhang X, Zou JJ, Li N, Guo Y, Li X, Shen X, Zhang Z. Isolation and characterization of 2019-nCoV-like coronavirus from Malayan pangolins. BioRxiv. 2020 Jan 1. doi: 10.1101/2020.02.17.951335.
- Zhang T, Wu Q, Zhang Z. Probable pangolin origin of SARS-CoV-2 associated with the COVID-19 outbreak. Current Biology. 2020 Mar 19. doi: 10.1016/j.cub.2020.03.063.
- Liu P, Chen W, Chen JP. Viral Metagenomics Revealed Sendai Virus and Coronavirus Infection of Malayan Pangolins (Manis javanica). Viruses. 2019 Nov;11(11):979. doi: 10.3390/v11110979.
- Wu A, Peng Y, Huang B, Ding X, Wang X, Niu P, Meng J, Zhu Z, Zhang Z, Wang J, Sheng J. Genome composition and divergence of the novel coronavirus (2019-nCoV) originating in China. Cell host & microbe. 2020 Feb 7. doi: 10.1016/j.chom.2020.02.001.
- Weiss SR, Leibowitz JL. Coronavirus pathogenesis. InAdvances in virus research 2011 Jan 1 (Vol. 81, pp. 85-164). Academic Press. doi: 10.1016/B978-0-12-385885-6.00009-2.
- Phelan AL, Katz R, Gostin LO. The novel coronavirus originating in Wuhan, China: challenges for global health governance. Jama. 2020 Feb 25;323(8):709-10. doi: 10.1001/jama.2020.1097.
- WHO. How does COVID-19 Spread? Available at: https://www.who.int/news-room/q-a-detail/q-a-coronaviruses
- Jin YH, Cai L, Cheng ZS, Cheng H, Deng T, Fan YP, Fang C, Huang D, Huang LQ, Huang Q, Han Y. A rapid advice guideline for the diagnosis and treatment of 2019 novel coronavirus (2019-nCoV) infected pneumonia (standard version). Military Medical Research. 2020 Dec 1;7(1):4.
- Wu D, Wu T, Liu Q, Yang Z. The SARS-CoV-2 outbreak: what we know. International Journal of Infectious Diseases. 2020 Mar 12;94:44-8. doi: 10.1016/j.ijid.2020.03.004.
- Yan R, Zhang Y, Li Y, Xia L, Guo Y, Zhou Q. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science. 2020 Mar 27;367(6485):1444-8. doi: 10.1126/science.abb2762.
- Glowacka I, Bertram S, Müller MA, Allen P, Soilleux E, Pfefferle S, Steffen I, Tsegaye TS, He Y, Gnirss K, Niemeyer D. Evidence that TMPRSS2 activates the severe acute respiratory syndrome coronavirus spike protein for membrane fusion and reduces viral control by the humoral immune response. Journal of virology. 2011 May 1;85(9):4122-34. doi: 10.1128/JVI.02232-10.
- Xu X, Chen P, Wang J, Feng J, Zhou H, Li X, Zhong W, Hao P. Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission. Science China Life Sciences. 2020 Mar;63(3):457-60. doi: 10.1007/s11427-020-1637-5.
- Islam H, Rahman A, Masud J, Shweta DS, Araf Y, Ullah MA, Sium SM, Sarkar B. A Generalized Overview of SARS-CoV-2: Where Does the Current Knowledge Stand?. Electron J Gen Med. 2020; 17 (6): em251.
- Namy O, Moran SJ, Stuart DI, Gilbert RJ, Brierley I. A mechanical explanation of RNA pseudoknot function in programmed ribosomal frameshifting. Nature. 2006 May;441(7090):244-7. doi: 10.1038/nature04735.
- Ziebuhr J, Snijder EJ, Gorbalenya AE. Virus-encoded proteinases and proteolytic processing in the Nidovirales. Journal of General Virology. 2000 Apr 1;81(4):853-79. doi: 10.1099/0022-1317-81-4-853.
- Sawicki SG, Sawicki DL, Siddell SG. A contemporary view of coronavirus transcription. Journal of virology. 2007 Jan 1;81(1):20-9. doi: 10.1128/JVI.01358-06.
- Perlman S, Netland J. Coronaviruses post-SARS: update on replication and pathogenesis. Nature reviews microbiology. 2009 Jun;7(6):439-50. doi: 10.1038/nrmicro2147.
- Iqbal HM, Romero-Castillo KD, Bilal M, Parra-Saldivar R. The Emergence of Novel-Coronavirus and its Replication Cycle-An Overview. Journal of Pure and Applied Microbiology. 2020;14(1). doi: 10.22207/JPAM.14.1.03.
- Nelemans T, Kikkert M. Viral Innate Immune Evasion and the Pathogenesis of Emerging RNA Virus Infections. Viruses. 2019 Oct;11(10):961. doi: 10.3390/v11100961.
- Fehr AR, Channappanavar R, Perlman S. Middle East respiratory syndrome: emergence of a pathogenic human coronavirus. Annual review of medicine. 2017 Jan 14;68:387-99. doi: 10.1146/annurev-med-051215-031152.
- Newton AH, Cardani A, Braciale TJ. The host immune response in respiratory virus infection: balancing virus clearance and immunopathology. In Seminars in immunopathology 2016 Jul 1 (Vol. 38, No. 4, pp. 471-482). Springer Berlin Heidelberg. doi: 10.1007/s00281-016-0558-0.
- Michalovich D, Rodriguez-Perez N, Smolinska S, Pirozynski M, Mayhew D, Uddin S, Van Horn S, Sokolowska M, Altunbulakli C, Eljaszewicz A, Pugin B. Obesity and disease severity magnify disturbed microbiome-immune interactions in asthma patients. Nature communications. 2019 Dec 13;10(1):1-4. doi: 10.1038/s41467-019-13751-9.
- Cheung CY, Poon LL, Ng IH, Luk W, Sia SF, Wu MH, Chan KH, Yuen KY, Gordon S, Guan Y, Peiris JS. Cytokine responses in severe acute respiratory syndrome coronavirus-infected macrophages in vitro: possible relevance to pathogenesis. Journal of virology. 2005 Jun 15;79(12):7819-26. doi: 10.1128/JVI.79.12.7819-7826.2005.
- Law HK, Cheung CY, Ng HY, Sia SF, Chan YO, Luk W, Nicholls JM, Peiris JM, Lau YL. Chemokine up-regulation in sars-coronavirus–infected, monocyte-derived human dendritic cells. Blood. 2005 Oct 1;106(7):2366-74. doi: 10.1182/blood-2004-10-4166.
- Chien JY, Hsueh PR, Cheng WC, Yu CJ, Yang PC. Temporal changes in cytokine/chemokine profiles and pulmonary involvement in severe acute respiratory syndrome. Respirology. 2006 Nov;11(6):715-22. doi: 10.1111/j.1440-1843.2006.00942.x.
- Wang CH, Liu CY, Wan YL, Chou CL, Huang KH, Lin HC, Lin SM, Lin TY, Chung KF, Kuo HP. Persistence of lung inflammation and lung cytokines with high-resolution CT abnormalities during recovery from SARS. Respiratory research. 2005 Dec 1;6(1):42. doi: 10.1186/1465-9921-6-42.
- Wong CK, Lam CW, Wu AK, Ip WK, Lee NL, Chan IH, Lit LC, Hui DS, Chan MH, Chung SS, Sung JJ. Plasma inflammatory cytokines and chemokines in severe acute respiratory syndrome. Clinical & Experimental Immunology. 2004 Apr;136(1):95-103. doi: 10.1111/j.1365-2249.2004.02415.x.
- Zhang Y, Li J, Zhan Y, Wu L, Yu X, Zhang W, Ye L, Xu S, Sun R, Wang Y, Lou J. Analysis of serum cytokines in patients with severe acute respiratory syndrome. Infection and immunity. 2004 Aug 1;72(8):4410-5. doi: 10.1128/IAI.72.8.4410-4415.2004.
- Tynell J, Westenius V, Rönkkö E, Munster VJ, Melén K, Österlund P, Julkunen I. Middle East respiratory syndrome coronavirus shows poor replication but significant induction of antiviral responses in human monocyte-derived macrophages and dendritic cells. The Journal of general virology. 2016 Feb 1;97(Pt 2):344. doi: 10.1099/jgv.0.000351.
- Zhou J, Chu H, Li C, Wong BH, Cheng ZS, Poon VK, Sun T, Lau CC, Wong KK, Chan JY, Chan JF. Active replication of Middle East respiratory syndrome coronavirus and aberrant induction of inflammatory cytokines and chemokines in human macrophages: implications for pathogenesis. The Journal of infectious diseases. 2014 May 1;209(9):1331-42. doi: 10.1093/infdis/jit504.
- Kim ES, Choe PG, Park WB, Oh HS, Kim EJ, Nam EY, Na SH, Kim M, Song KH, Bang JH, Park SW. Clinical progression and cytokine profiles of Middle East respiratory syndrome coronavirus infection. Journal of Korean medical science. 2016 Nov 1;31(11):1717-25. doi: 10.3346/jkms.2016.31.11.1717.
- Min CK, Cheon S, Ha NY, Sohn KM, Kim Y, Aigerim A, Shin HM, Choi JY, Inn KS, Kim JH, Moon JY. Comparative and kinetic analysis of viral shedding and immunological responses in MERS patients representing a broad spectrum of disease severity. Scientific reports. 2016 May 5;6(1):1-2. doi: 10.1038/srep25359.
- Pedersen SF, Ho YC. SARS-CoV-2: a storm is raging. The Journal of clinical investigation. 2020 Apr 13;130(5).
- Yang Y, Shen C, Li J, Yuan J, Yang M, Wang F, Li G, Li Y, Xing L, Peng L, Wei J. Exuberant elevation of IP-10, MCP-3 and IL-1ra during SARS-CoV-2 infection is associated with disease severity and fatal outcome. MedRxiv. 2020 Jan 1.
- Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X, Cheng Z. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet. 2020 Feb 15;395(10223):497-506. doi: 10.1016/S0140-6736(20)30183-5.
- Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, Qiu Y, Wang J, Liu Y, Wei Y, Yu T. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. The Lancet. 2020 Feb 15;395(10223):507-13. doi: 10.1016/S0140-6736(20)30211-7.
- Pfefferle S, Reucher S, Nörz D, Lütgehetmann M. Evaluation of a quantitative RT-PCR assay for the detection of the emerging coronavirus SARS-CoV-2 using a high throughput system. Eurosurveillance. 2020 Mar 5;25(9). doi: 10.2807/1560-7917.ES.2020.25.9.2000152.
- Sarkar B, Ullah MA, Johora FT, Taniya MA, Araf Y. Immunoinformatics-guided designing of epitope-based subunit vaccine against the SARS Coronavirus-2 (SARS-CoV-2). Immunobiology. 2020 May 11:151955.
- Xie C, Jiang L, Huang G, Pu H, Gong B, Lin H, Ma S, Chen X, Long B, Si G, Yu H. Comparison of different samples for 2019 novel coronavirus detection by nucleic acid amplification tests. International Journal of Infectious Diseases. 2020 Feb 27;93:264-7. doi: 10.1016/j.ijid.2020.02.050.
- To KK, Tsang OT, Yip CC, Chan KH, Wu TC, Chan JM, Leung WS, Chik TS, Choi CY, Kandamby DH, Lung DC. Consistent detection of 2019 novel coronavirus in saliva. Clinical infectious diseases: an official publication of the Infectious Diseases Society of America. 2020 Feb 12;71(15):841-3. doi: 10.1093/cid/ciaa149.
- Al-Tawfiq JA, Memish ZA. Diagnosis of SARS-CoV-2 Infection based on CT scan vs. RT-PCR: Reflecting on Experience from MERS-CoV. Journal of Hospital Infection. 2020 Mar 6;105(2):154-5. doi: 10.1016/j.jhin.2020.03.001.
- Pan Y, Guan H, Zhou S, Wang Y, Li Q, Zhu T, Hu Q, Xia L. Initial CT findings and temporal changes in patients with the novel coronavirus pneumonia (2019-nCoV): a study of 63 patients in Wuhan, China. European radiology. 2020 Feb 13:1-4. doi: 10.1007/s00330-020-06731-x.
- Zhang JJ, Dong X, Cao YY, Yuan YD, Yang YB, Yan YQ, Akdis CA, Gao YD. Clinical characteristics of 140 patients infected with SARS‐CoV‐2 in Wuhan, China. Allergy. 2020 Feb 19;75(7):1730-41. doi: 10.1111/all.14238.
- Xu Y, Li X, Zhu B, Liang H, Fang C, Gong Y, Guo Q, Sun X, Zhao D, Shen J, Zhang H. Characteristics of pediatric SARS-CoV-2 infection and potential evidence for persistent fecal viral shedding. Nature Medicine. 2020 Mar 13;26:502-5. doi: 10.1038/s41591-020-0817-4.
- Chung M, Bernheim A, Mei X, Zhang N, Huang M, Zeng X, Cui J, Xu W, Yang Y, Fayad ZA, Jacobi A. CT imaging features of 2019 novel coronavirus (2019-nCoV). Radiology. 2020 Apr;295(1):202-7. doi: 10.1148/radiol.2020200230.
- Kanne JP. Chest CT findings in 2019 novel coronavirus (2019-nCoV) infections from Wuhan, China: key points for the radiologist. Radiology 2020;295(1):16-7. doi: 10.1148/radiol.2020200241.
- Li X, Geng M, Peng Y, Meng L, Lu S. Molecular immune pathogenesis and diagnosis of COVID-19. Journal of Pharmaceutical Analysis. 2020 Mar 5;10(2):102-8. doi: 10.1016/j.jpha.2020.03.001.
- Li Z, Yi Y, Luo X, Xiong N, Liu Y, Li S, Sun R, Wang Y, Hu B, Chen W, Zhang Y. Development and Clinical Application of A Rapid IgM‐IgG Combined Antibody Test for SARS‐CoV‐2 Infection Diagnosis. Journal of medical virology. 2020 Feb 27;Early View. doi: 10.1002/jmv.25727.
- Liu W, Liu L, Kou G, Zheng Y, Ding Y, Ni W, Wang Q, Tan L, Wu W, Tang S, Xiong Z. Evaluation of Nucleocapsid and Spike Protein-based ELISAs for detecting antibodies against SARS-CoV-2. Journal of Clinical Microbiology. 2020 Mar 30;58: e00461-20. doi: 10.1128/JCM.00461-20.
- Li G, De Clercq E. Therapeutic options for the 2019 novel coronavirus (2019-nCoV). Nature Reviews Drug Discovery 2020;19:149-50. doi: 10.1038/d41573-020-00016-0.
- Liu W, Morse JS, Lalonde T, Xu S. Learning from the past: possible urgent prevention and treatment options for severe acute respiratory infections caused by 2019‐nCoV. Chembiochem. 2020 Mar 2. doi: 10.26434/chemrxiv.11728983.v1.
- Du L, He Y, Zhou Y, Liu S, Zheng BJ, Jiang S. The spike protein of SARS-CoV—a target for vaccine and therapeutic development. Nature Reviews Microbiology. 2009 Mar;7(3):226-36. doi: 10.1038/nrmicro2090.
- Grum-Tokars V, Ratia K, Begaye A, Baker SC, Mesecar AD. Evaluating the 3C-like protease activity of SARS-Coronavirus: recommendations for standardized assays for drug discovery. Virus research. 2008 Apr 1;133(1):63-73. doi: 10.1016/j.virusres.2007.02.015.
- Shum KT, Tanner JA. Differential inhibitory activities and stabilisation of DNA aptamers against the SARS coronavirus helicase. Chembiochem. 2008 Dec 15;9(18):3037-45. doi: 10.1002/cbic.200800491.
- Xu X, Liu Y, Weiss S, Arnold E, Sarafianos SG, Ding J. Molecular model of SARS coronavirus polymerase: implications for biochemical functions and drug design. Nucleic acids research. 2003 Dec 15;31(24):7117-30. doi: 10.1093/nar/gkg916.
- Zhang H, Penninger JM, Li Y, Zhong N, Slutsky AS. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Intensive Care Medicine. 2020 Mar 3;46:586-90. doi: 10.1007/s00134-020-05985-9.
- Gurwitz D. Angiotensin receptor blockers as tentative SARS‐CoV‐2 therapeutics. Drug development research. 2020 Mar 4;81(5):537-40. doi: 10.1002/ddr.21656.
- Yang Y, Islam MS, Wang J, Li Y, Chen X. Traditional Chinese Medicine in the Treatment of Patients Infected with 2019-New Coronavirus (SARS-CoV-2): A Review and Perspective. International Journal of Biological Sciences. 2020;16(10):1708-17. doi: 10.7150/ijbs.45538.
- Wang M, Cao R, Zhang L, Yang X, Liu J, Xu M, Shi Z, Hu Z, Zhong W, Xiao G. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell research. 2020 Mar;30(3):269-71. doi: 10.1038/s41422-020-0282-0.
- Holshue ML, DeBolt C, Lindquist S, Lofy KH, Wiesman J, Bruce H, Spitters C, Ericson K, Wilkerson S, Tural A, Diaz G. First case of 2019 novel coronavirus in the United States. New England Journal of Medicine. 2020 Jan 31;382:929-936. doi: 10.1056/NEJMoa2001191.
- Liu J, Cao R, Xu M, Wang X, Zhang H, Hu H, Li Y, Hu Z, Zhong W, Wang M. Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro. Cell discovery. 2020 Mar 18;6(1):Article no 16. doi: 10.1038/s41421-020-0156-0.
- Choy KT, Wong AY, Kaewpreedee P, Sia SF, Chen D, Hui KP, Chu DK, Chan MC, Cheung PP, Huang X, Peiris M. Remdesivir, lopinavir, emetine, and homoharringtonine inhibit SARS-CoV-2 replication in vitro. Antiviral Research. 2020 Apr 3;178:104786. doi: 10.1016/j.antiviral.2020.104786.
- Caly L, Druce JD, Catton MG, Jans DA, Wagstaff KM. The FDA-approved Drug Ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antiviral Research. 2020 Apr 3;178:104787. doi: 10.1016/j.antiviral.2020.104787.
- Sheahan TP, Sims AC, Zhou S, Graham RL, Pruijssers AJ, Agostini ML, Leist SR, Schäfer A, Dinnon KH, Stevens LJ, Chappell JD. An orally bioavailable broad-spectrum antiviral inhibits SARS-CoV-2 in human airway epithelial cell cultures and multiple coronaviruses in mice. Science Translational Medicine. 2020 Apr 6;12(541): eabb5883. doi: 10.1126/scitranslmed.abb5883.
- Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, Schiergens TS, Herrler G, Wu NH, Nitsche A, Müller MA. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020 Mar 5;181(2):271-80. doi: 10.1016/j.cell.2020.02.052.
- Ye X, Luo Y, Xia S, Sun Q, Ding J, Zhou Y, Chen W, et al. Clinical efficacy of lopinavir/ritonavir in the treatment of Coronavirus disease 2019. European Review for Medical and Pharmacological Sciences. 2020;24:3390-6. doi: 10.26355/eurrev_202003_20706.
- Cao B, Wang Y, Wen D, Liu W, Wang J, Fan G, Ruan L, Song B, Cai Y, Wei M, Li X. A trial of lopinavir–ritonavir in adults hospitalized with severe Covid-19. New England Journal of Medicine. 2020 Mar 18;382:1787-99. doi: 10.1056/NEJMoa2001282.
- Amanat F, Krammer F. SARS-CoV-2 Vaccines: Status Report. Immunity. 2020 Apr 6;52(4):583-9. doi: 10.1016/j.immuni.2020.03.007.
- Kupferschmidt K, Cohen J. WHO launches global megatrial of the four most promising coronavirus treatments. Science. 2020 Mar 22. Available at: https://www.sciencemag.org/news/2020/03/who-launches-global-megatrial-four-most-promising-coronavirus-treatments (Accessed: 10 April 2020).
- Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grant JR, Sajed T, Johnson D, Li C, Sayeeda Z, Assempour N, Iynkkaran I, Liu Y, Maciejewski A, Gale N, Wilson A, Chin L, Cummings R, Le D, Pon A, Knox C, Wilson M. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. 2017 Nov 8;46(D1):1074-82. doi: 10.1093/nar/gkx1037.
- Zhou Y, Hou Y, Shen J, Huang Y, Martin W, Cheng F. Network-based drug repurposing for novel coronavirus 2019-nCoV/SARS-CoV-2. Cell Discovery. 2020 Mar 16;6(1):Article no 14. doi: 10.1038/s41421-020-0153-3.
- Chen CN, Lin CP, Huang KK, Chen WC, Hsieh HP, Liang PH, Hsu JT. Inhibition of SARS-CoV 3C-like protease activity by theaflavin-3, 3’-digallate (TF3). Evidence-Based Complementary and Alternative Medicine. 2005;2(2):209-15. doi: 10.1093/ecam/neh081.
- Jain RP, Pettersson HI, Zhang J, Aull KD, Fortin PD, Huitema C, Eltis LD, Parrish JC, James MN, Wishart DS, Vederas JC. Synthesis and evaluation of keto-glutamine analogues as potent inhibitors of severe acute respiratory syndrome 3CLpro. Journal of medicinal chemistry. 2004 Dec 2;47(25):6113-6. doi: 10.1021/jm0494873.
- Ryu YB, Jeong HJ, Kim JH, Kim YM, Park JY, Kim D, Naguyen TT, Park SJ, Chang JS, Park KH, Rho MC. Biflavonoids from Torreya nucifera displaying SARS-CoV 3CLpro inhibition. Bioorganic & medicinal chemistry. 2010 Nov 15;18(22):7940-7. doi: 10.1016/j.bmc.2010.09.035.
- Tanner JA, Zheng BJ, Zhou J, Watt RM, Jiang JQ, Wong KL, Lin YP, Lu LY, He ML, Kung HF, Kesel AJ. The adamantane-derived bananins are potent inhibitors of the helicase activities and replication of SARS coronavirus. Chemistry & biology. 2005 Mar 1;12(3):303-11. doi: 10.1016/j.chembiol.2005.01.006.
- Barnard DL, Hubbard VD, Burton J, Smee DF, Morrey JD, Otto MJ, Sidwell RW. Inhibition of severe acute respiratory syndrome-associated coronavirus (SARSCoV) by calpain inhibitors and β-D-N4-hydroxycytidine. Antiviral Chemistry and Chemotherapy. 2004 Feb;15(1):15-22. doi: 10.1177/095632020401500102.
- Cho JK, Curtis-Long MJ, Lee KH, Kim DW, Ryu HW, Yuk HJ, Park KH. Geranylated flavonoids displaying SARS-CoV papain-like protease inhibition from the fruits of Paulownia tomentosa. Bioorganic & medicinal chemistry. 2013 Jun 1;21(11):3051-7. doi: 10.1016/j.bmc.2013.03.027.
- Berry JD, Hay K, Rini JM, Yu M, Wang L, Plummer FA, Corbett CR, Andonov A. Neutralizing epitopes of the SARS-CoV S-protein cluster independent of repertoire, antigen structure or mAb technology. InMAbs 2010 Jan 1 (Vol. 2, No. 1, pp. 53-66). Taylor & Francis. doi: 10.4161/mabs.2.1.10788.
- Sui J, Li W, Murakami A, Tamin A, Matthews LJ, Wong SK, Moore MJ, Tallarico AS, Olurinde M, Choe H, Anderson LJ. Potent neutralization of severe acute respiratory syndrome (SARS) coronavirus by a human mAb to S1 protein that blocks receptor association. Proceedings of the National Academy of Sciences. 2004 Feb 24;101(8):2536-41. doi: 10.1073/pnas.0307140101.
- Berry JD, Hay K, Rini JM, Yu M, Wang L, Plummer FA, Corbett CR, Andonov A. Neutralizing epitopes of the SARS-CoV S-protein cluster independent of repertoire, antigen structure or mAb technology. InMAbs 2010 Jan 1 (Vol. 2, No. 1, pp. 53-66). Taylor & Francis. doi: 10.4161/mabs.2.1.10788.
- Tian X, Li C, Huang A, Xia S, Lu S, Shi Z, Lu L, Jiang S, Yang Z, Wu Y, Ying T. Potent binding of 2019 novel coronavirus spike protein by a SARS coronavirus-specific human monoclonal antibody. Emerging microbes & infections. 2020 Jan 1;9(1):382-5. doi: 10.1080/22221751.2020.1729069.
- Elshabrawy HA, Coughlin MM, Baker SC, Prabhakar BS. Human monoclonal antibodies against highly conserved HR1 and HR2 domains of the SARS-CoV spike protein are more broadly neutralizing. Plos one. 2012;7(11): e50366. doi: 10.1371/journal.pone.0050366.
- Walls AC, Xiong X, Park YJ, Tortorici MA, Snijder J, Quispe J, Cameroni E, Gopal R, Dai M, Lanzavecchia A, Zambon M. Unexpected receptor functional mimicry elucidates activation of coronavirus fusion. Cell. 2019 Feb 21;176(5):1026-39. doi: 10.1016/j.cell.2018.12.028.
- Kruse RL. Therapeutic strategies in an outbreak scenario to treat the novel coronavirus originating in Wuhan, China. F1000Research. 2020;9:72. doi: 10.12688/f1000research.22211.2.
- Cinatl J, Morgenstern B, Bauer G, Chandra P, Rabenau H, Doerr HW. Treatment of SARS with human interferons. The Lancet. 2003 Jul 26;362(9380):293-4. doi: 10.1016/S0140-6736(03)13973-6.
- Hensley LE, Fritz EA, Jahrling PB, Karp C, Huggins JW, Geisbert TW. Interferon-β 1a and SARS coronavirus replication. Emerging infectious diseases. 2004 Feb;10(2):317. doi: 10.3201/eid1002.030482.
- Falzarano D, De Wit E, Martellaro C, Callison J, Munster VJ, Feldmann H. Inhibition of novel β coronavirus replication by a combination of interferon-α2b and ribavirin. Scientific reports. 2013 Apr 18;3:1686. doi: 10.1038/srep01686.
- Kopecky-Bromberg SA, Martínez-Sobrido L, Frieman M, Baric RA, Palese P. Severe acute respiratory syndrome coronavirus open reading frame (ORF) 3b, ORF 6, and nucleocapsid proteins function as interferon antagonists. Journal of virology. 2007 Jan 15;81(2):548-57. doi: 10.1128/JVI.01782-06.
- Sallard E, Lescure FX, Yazdanpanah Y, Mentre F, Peiffer-Smadja N, Florence AD, et al. Type 1 interferons as a potential treatment against COVID-19. Antiviral Research. 2020 Apr 7;178:104791. doi: 10.1016/j.antiviral.2020.104791.
- Lokugamage KG, Hage A, Schindewolf C, Rajsbaum R, Menachery VD. SARS-CoV-2 sensitive to type I interferon pretreatment. BioRxiv. 2020 Jan 1. doi: 10.1101/2020.03.07.982264.
- Hannon GJ. RNA interference. nature. 2002 Jul;418(6894):244-51. doi: 10.1038/418244a.
- Shi Y. Mammalian RNAi for the masses. TRENDS in Genetics. 2003 Jan 1;19(1):9-12. doi: 10.1016/S0168-9525(02)00005-7.
- Haasnoot J, Cupac D, Berkhout B. Inhibition of virus replication by RNA interference. Journal of biomedical science. 2003 Oct 1;10(6):607-16. doi: 10.1007/BF02256311.
- Qin ZL, Zhao P, Zhang XL, Yu JG, Cao MM, Zhao LJ, Luan J, Qi ZT. Silencing of SARS-CoV spike gene by small interfering RNA in HEK 293T cells. Biochemical and biophysical research communications. 2004 Nov 26;324(4):1186-93. doi: 10.1016/j.bbrc.2004.09.180.
- Åkerström S, Mirazimi A, Tan YJ. Inhibition of SARS-CoV replication cycle by small interference RNAs silencing specific SARS proteins, 7a/7b, 3a/3b and S. Antiviral research. 2007 Mar 1;73(3):219-27. doi: 10.1016/j.antiviral.2006.10.008.
- Wu CJ, Huang HW, Liu CY, Hong CF, Chan YL. Inhibition of SARS-CoV replication by siRNA. Antiviral research. 2005 Jan 1;65(1):45-8. doi: 10.1016/j.antiviral.2004.09.005.
- Li BJ, Tang Q, Cheng D, Qin C, Xie FY, Wei Q, Xu J, Liu Y, Zheng BJ, Woodle MC, Zhong N. Using siRNA in prophylactic and therapeutic regimens against SARS coronavirus in Rhesus macaque. Nature medicine. 2005 Sep;11(9):944-51. doi: 10.1038/nm1280.
- Sarkar B, Islam SS, Zohora US, Ullah MA. Virus like particles-A recent advancement in vaccine development. Korean Journal of Microbiology. 2019 Dec;55(4):327-43.
- Siegrist CA. Vaccine immunology. Vaccines. 2008 Feb 11;5(1):17-36. doi: 10.1016/B978-1-4160-3611-1.50006-4.
- Thanh Le T, Andreadakis Z, Kumar A, Gómez Román R, Tollefsen S, Saville M et al. The COVID-19 vaccine development landscape. Nature Reviews Drug Discovery. 2020;19:305-6. doi: 10.1038/d41573-020-00073-5.
- Milkeninstitute.org. 2020 (Cited: 14 April 2020). Available at: https://milkeninstitute.org/sites/default/files/2020-04/Covid19%20Tracker%20NEW4-9-20-2.pdf
- China’s CanSino Bio advances COVID-19 vaccine into phase 2 on preliminary safety data [Internet]. FiercePharma. 2020 (Cited: 14 April 2020). Available at: https://www.fiercepharma.com/vaccines/china-s-cansino-bio-advances-covid-19-vaccine-into-phase-2-preliminary-safety-data
- University of Oxford Commences Clinical Trial for Vaccine Candidate (ChAdOx1 nCoV-19) Targeting COVID-19. Trial Site News. 2020 (Cited: 14 April 2020). Available at: https://www.trialsitenews.com/university-of-oxford-commences-clinical-trial-for-vaccine-candidate-chadox1-ncov-19-targeting-covid-19-2
- Woodcock J, Woosley R. The FDA critical path initiative and its influence on new drug development. Annu. Rev. Med.. 2008 Feb 18;59:1-2. doi: 10.1146/annurev.med.59.090506.155819.
- CanSino Biological, Moderna, and INOVIO Lead COVID-19 Vaccine Race; 42 Other Candidates in Pre-Clinical Stage. Trial Site News. 2020 (Cited: 14 April 2020). Available from: https://www.trialsitenews.com/cansino-biological-moderna-and-inovio-lead-covid-19-vaccine-race-42-other-candidates-in-pre-clinical-stage
- A Phase I Clinical Trial in 18-60 Adults - Full Text View - ClinicalTrials.gov [Internet]. Clinicaltrials.gov. 2020 (Cited: 14 April 2020). Available at: https://clinicaltrials.gov/ct2/show/NCT04313127
- A Phase II Clinical Trial to Evaluate the Recombinant Novel Coronavirus Vaccine (Adenovirus Vector) - Full Text View - ClinicalTrials.gov [Internet]. Clinicaltrials.gov. 2020 (Cited: 14 April 2020). Available at: https://www.clinicaltrials.gov/ct2/show/NCT04341389
- Ad5-nCoV - DrugBank [Internet]. Drugbank.ca. 2020 (Cited: 14 April 2020). Available at: https://www.drugbank.ca/drugs/DB15655
- ChAdOx1 nCoV-19 - DrugBank. Drugbank.ca. 2020 (Cited: 14 April 2020). Available at: https://www.drugbank.ca/drugs/DB15656
- A Study of a Candidate COVID-19 Vaccine (COV001) - Full Text View - ClinicalTrials.gov. Clinicaltrials.gov. 2020 (Cited: 14 April 2020). Available at: https://clinicaltrials.gov/ct2/show/NCT04324606
- NIH clinical trial of investigational vaccine for COVID-19 begins. National Institutes of Health (NIH). 2020 (Cited: 14 April 2020). Available at: https://www.nih.gov/news-events/news-releases/nih-clinical-trial-investigational-vaccine-covid-19-begins
- Safety and Immunogenicity Study of 2019-nCoV Vaccine (mRNA-1273) for Prophylaxis SARS CoV-2 Infection (COVID-19) - Full Text View - ClinicalTrials.gov. Clinicaltrials.gov. 2020 (Cited: 14 April 2020). Available at: https://clinicaltrials.gov/ct2/show/NCT04283461
- Safety and Immunity of Covid-19 aAPC Vaccine - Full Text View - ClinicalTrials.gov. Clinicaltrials.gov. 2020 (Cited: 14 April 2020). Available at: https://clinicaltrials.gov/ct2/show/NCT04299724
- Immunity and Safety of Covid-19 Synthetic Minigene Vaccine - Full Text View - ClinicalTrials.gov. Clinicaltrials.gov. 2020 (Cited: 14 April 2020). Available at: https://clinicaltrials.gov/ct2/show/NCT04276896
- INOVIO Initiates Phase 1 Clinical Trial Of Its COVID-19 Vaccine and Plans First Dose Today. Ir.inovio.com. 2020 (Cited: 14 April 2020). Available at: http://ir.inovio.com/news-and-media/news/press-release-details/2020/INOVIO-Initiates-Phase-1-Clinical-Trial-Of-Its-COVID-19-Vaccine-and-Plans-First-Dose-Today/default.aspx
- Safety, Tolerability and Immunogenicity of INO-4800 for COVID-19 in Healthy Volunteers - Full Text View - ClinicalTrials.gov. Clinicaltrials.gov. 2020 (Cited: 14 April 2020). Available at: https://clinicaltrials.gov/ct2/show/NCT04336410
- 2020 M, vaccine C. Cobra Biologics and the Karolinska Institutet collaborate to develop COVID-19 vaccine - Cobra Bio. Cobra Bio. 2020 (Cited: 14 April 2020). Available at: https://www.cobrabio.com/News/March-2020/Cobra-Karolinska-Institutet-COVID-19-Vaccine
- Martin U. The Biologics News and Reports Portal. pipelinereview. 2020 (Cited: 14 April 2020). Available at: https://pipelinereview.com/index.php/2020033174166/Vaccines/Cobra-Biologics-and-the-Karolinska-Institutet-collaborate-to-develop-COVID-19-vaccine.html
- Tirumalaraju D. Cobra Biologics, Karolinska Institutet partner on Covid-19 vaccine. Pharmaceutical-technology.com. 2020 (Cited: 14 April 2020). Available at: https://www.pharmaceutical-technology.com/news/cobra-biologics-karolinska-covid-vaccine/
- Martin U. The Biologics News and Reports Portal. pipelinereview. 2020 (Cited: 14 April 2020). Available at: https://pipelinereview.com/index.php/2020021773810/Vaccines/Zydus-Cadila-launches-a-fast-tracked-programme-to-develop-vaccine-for-the-novel-coronavirus-2019-nCoV-COVID-19.html
- Zydus Cadila accelerates COVID-19 vaccine research | PharmaTutor. Pharmatutor.org. 2020 (Cited: 14 April 2020). Available at: https://www.pharmatutor.org/pharma-news/2020/zydus-cadila-accelerates-covid-19-vaccine-research
- Altimmune Becomes The Second Maryland-Based Biotech Advance Potential Coronavirus/COVID-19 Vaccine · BioBuzz. BioBuzz. 2020 (Cited: 14 April 2020). Available at: https://biobuzz.io/altimmune-becomes-the-second-maryland-based-biotech-advance-potential-coronavirus-covid-19-vaccine/
- Altimmune develops single-dose intranasal vaccine for COVID-19. NS Healthcare. 2020 (Cited: 14 April 2020). Available at: https://www.google.com/amp/s/www.ns-healthcare.com/news/altimmune-covid-19-vaccine/amp/
- Altimmune Partners with University of Alabama to Develop Intranasal Coronavirus Vaccine. mobile.Hospimedica.com. 2020 (Cited: 14 April 2020). Available at: https://mobile.hospimedica.com/covid-19/articles/294781428/altimmune-partners-with-university-of-alabama-to-develop-intranasal-coronavirus-vaccine.html
- Altimmune Completes First Development Milestone Toward a Single-Dose Intranasal COVID-19 Vaccine. Truffle. 2020 (Cited: 14 April 2020). Available at: https://www.truffle.com/en/actualites/altimmune-franchit-une-premiere-etape-de-developpement-vers-un-vaccin-covid-19-intranasal-a-dose-unique
- Post T. Pharma firm Anges and Osaka University to begin testing coronavirus vaccine on animals. The Jakarta Post. 2020 (Cited: 14 April 2020). Available at: https://www.google.com/amp/s/www.thejakartapost.com/amp/news/2020/03/24/pharma-firm-anges-and-osaka-university-to-begin-testing-coronavirus-vaccine-on-animals.html
- Pharma Firm AnGes and Osaka University to Initiate Coronavirus Vaccine Testing on Animals. GeneOnline News. 2020 (Cited: 14 April 2020). Available at: https://geneonline.news/en/2020/03/25/pharma-firm-anges-and-osaka-university-to-initiate-coronavirus-vaccine-testing-on-animals/?doing_wp_cron=1586778205.3787479400634765625000
- Sanofi: Press Releases, Friday, March 27, 2020. (Cited: 14 April 2020). Available at: https://www.sanofi.com/en/media-room/press-releases/2020/2020-03-27-07-00-00
- Tone S. Four Vaccine Types That Could Stop the Coronavirus, Explained. Sixth Tone. 2020 (Cited: 14 April 2020). Available at: https://www.sixthtone.com/news/1005398/four-vaccine-types-that-could-stop-the-coronavirus%2C-explained
- CEPI collaborates with Institut Pasteur to develop COVID-19 vaccine. Biospectrumasia.com. 2020 (Cited: 14 April 2020). Available at: https://www.biospectrumasia.com/news/26/15637/cepi-collaborates-with-institut-pasteur-to-develop-covid-19-vaccine.html
- Researchers in Pittsburgh, Paris and Vienna Win Grant for COVID-19 Vaccine. Pittwire. 2020 (Cited: 14 April 2020). Available at: https://www.pittwire.pitt.edu/news/researchers-pittsburgh-paris-and-vienna-win-grant-covid-19-vaccine
- Russian Vaccine against COVID-19 Put on WHO List of Promising Vaccines. GMP news. 2020 (Cited: 14 April 2020). Available at: https://gmpnews.net/2020/04/russian-vaccine-against-covid-19-put-on-who-list-of-promising-vaccines/
- Russian vaccine put on WHO list of promising anti-coronavirus vaccines. TASS. 2020 (Cited: 14 April 2020). Available at: https://tass.com/science/1141257
- Coronavirus: Russian vaccine put on WHO list. 2020 (Cited: 14 April 2020). Available at: https://www.banglanews24.com/english/health/article/83431/Coronavirus-Russian-vaccine-put-on-WHO-list
- Mariano Esteban: “We need to use all clinical means to protect the population, slow down the infection, and allow the body to overcome it” - Grupo MAPFRE Corporativo - Acerca de MAPFRE. Grupo MAPFRE Corporativo - Acerca de MAPFRE. 2020 (Cited: 14 April 2020). Available at: https://www.mapfre.com/en/interview-mariano-esteban/
- Medeiros D. Press Release: Immunomic Therapeutics Forms Collaboration with EpiVax and PharmaJet to Develop Novel Vaccine Candidate Against COVID-19 Using its Investigational UNITE Platform - EpiVax, Inc. - Informatics and Immunology. EpiVax, Inc. - Informatics and Immunology. 2020 (Cited: 14 April 2020). Available at: https://epivax.com/featured/press-release-immunomic-therapeutics-forms-collaboration-with-epivax-and-pharmajet-to-develop-novel-vaccine-candidate-against-covid-19-using-its-investigational-unite-platform
- Tirumalaraju D, Tirumalaraju D. Immunomic partners EpiVax and PharmaJet on Covid-19 vaccine. Pharmaceutical-technology.com. 2020 (Cited: 14 April 2020). Available at: https://www.pharmaceutical-technology.com/news/immunomic-covid-19-vaccine/
How to cite this article
Vancouver
Ullah MA, Araf Y, Sarkar B, Moin AT, Reshad RAI, Rahman MH. Pathogenesis, Diagnosis and Possible Therapeutic Options for COVID-19. J Clin Exp Invest. 2020;11(4):em00755. https://doi.org/10.29333/jcei/8564
APA
Ullah, M. A., Araf, Y., Sarkar, B., Moin, A. T., Reshad, R. A. I., & Rahman, M. H. (2020). Pathogenesis, Diagnosis and Possible Therapeutic Options for COVID-19. Journal of Clinical and Experimental Investigations, 11(4), em00755. https://doi.org/10.29333/jcei/8564
AMA
Ullah MA, Araf Y, Sarkar B, Moin AT, Reshad RAI, Rahman MH. Pathogenesis, Diagnosis and Possible Therapeutic Options for COVID-19. J Clin Exp Invest. 2020;11(4), em00755. https://doi.org/10.29333/jcei/8564
Chicago
Ullah, Md. Asad, Yusha Araf, Bishajit Sarkar, Abu Tayab Moin, Riyan Al Islam Reshad, and MD. Hasanur Rahman. "Pathogenesis, Diagnosis and Possible Therapeutic Options for COVID-19". Journal of Clinical and Experimental Investigations 2020 11 no. 4 (2020): em00755. https://doi.org/10.29333/jcei/8564
Harvard
Ullah, M. A., Araf, Y., Sarkar, B., Moin, A. T., Reshad, R. A. I., and Rahman, M. H. (2020). Pathogenesis, Diagnosis and Possible Therapeutic Options for COVID-19. Journal of Clinical and Experimental Investigations, 11(4), em00755. https://doi.org/10.29333/jcei/8564
MLA
Ullah, Md. Asad et al. "Pathogenesis, Diagnosis and Possible Therapeutic Options for COVID-19". Journal of Clinical and Experimental Investigations, vol. 11, no. 4, 2020, em00755. https://doi.org/10.29333/jcei/8564