Abstract
Objective: This review summarizes the methods of chitosan production as well as its various potential applications.
Materials and Methods: This study has been performed by literature review.
Results: Chitin is a natural compound that is the second most abundant biological compound in nature. Chitin is found in many fungi species and aquatic crustaceans like crabs, shrimps, and many insects. Shrimp is the source of one of the most rapidly increasing businesses in the world. However, during shrimp processing, the hard exoskeleton of shrimps, like shrimp skin and head portions, is discarded as bio-waste. This exoskeleton of shrimp contains a considerable amount of chitin. Chitosan is a bio-product that is produced from chitin by the deacetylation process. Either chemical or biological processes can carry out the deacetylation process. The massive number of chitin treated as bio-waste can be used to produce chitosan. Chitosan is a biocompatible compound, naturally biodegradable, and non-toxic, and this compound can be used in various applications. Chitosan has potential antimicrobial and antioxidant activities. Moreover, it can also be used in drug delivery, biotechnology, bio-nanotechnology, food technology, regenerative medicine, medicine, numerous industrial applications, gene therapy, cancer therapy, agriculture, environmental protection, and so on.
Conclusion: Chitosan can be used in almost all fields of biology. Although chitosan is not still used in all the mentioned fields shortly, chitosan should significantly impact these areas. More researches should be performed to make chitosan a compound of many applications and possibilities.
License
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Article Type: Review Article
J CLIN EXP INVEST, Volume 12, Issue 4, December 2021, Article No: em00779
https://doi.org/10.29333/jcei/11268
Publication date: 14 Oct 2021
Article Views: 4816
Article Downloads: 14783
Open Access References How to cite this articleReferences
- Mahmoud NS, Ghaly AE, Arab F. Unconventional approach for demineralization of deproteinized crustacean shells for chitin production. American Journal of Biochemistry and Biotechnology, 2007; 3(1):1-9. doi: 10.3844/ajbbsp.2007.1.9.
- Rinaudo M. Chitin and chitosan: properties and applications. Progress in Polymer Science, 2006; 31(7):603-32.
- Rosenberry B. World shrimp farming. Shrimp News International, 1998;11:328.
- Suchiva K, Chandrkrachang S, Methacanon P, Peter MG. Proceedings of the 5th Asia Pacific Chitin and Chitosan Symposium & Exhibition. Bangkok, Thailand. 2002.
- Lertsutthiwong P, How NC, Chandrkrachang S, Stevens WF. Effect of chemical treatment on the characteristics of Shrimp Chitosan. Journal of Metals, Materials and Minerals, 2002;12(1):11-8. doi: 10.1016/j.pnsc.2012.07.008.
- Periayah MH, Halim AS, Saad AZM. Chitosan: A promising marine polysaccharide for biomedical research. Pharmacognosy Reviews, 2016;10(19):39. doi: 10.4103/0973-7847.176545.
- Gallo M, Naviglio D, Caruso AA, Ferrara L. Applications of chitosan as a functional food. In Novel approaches of nanotechnology in food, 2016:425-464. doi: 10.1016/b978-0-12-804308-0.00013-3.
- Rout SK. Physicochemical, functional and spectroscopic analysis of crawfish chitin and chitosan as affected by process modification. 2001.
- Kumari S, Rath P, Kumar ASH, Tiwari TN. Extraction and characterization of chitin and chitosan from fishery waste by chemical method. Environmental Technology & Innovation, 2015;3:77-85. doi: 10.1016/j.eti.2015.01.002.
- Pacheco N, Garnica-Gonzalez M, Gimeno M, Bárzana E, Trombotto S, David L, Shirai K. Structural characterization of chitin and chitosan obtained by biological and chemical methods. Biomacromolecules, 2011;12(9):3285-90. doi: 10.1021/bm200750t.
- Ploydee E, Chaiyanan S. Production of high viscosity chitosan from biologically purified chitin isolated by microbial fermentation and deproteinization. International Journal of Polymer Science, 2014. doi: 10.1155/2014/162173.
- Rungsardthong V, Wongvuttanakul N, Kongpien N, Chotiwaranon P. Application of fungal chitosan for clarification of apple juice. Process biochemistry, 2006;41(3):589-93. doi: 10.1016/j.procbio.2005.08.003.
- Varun TK, Senani S, Jayapal N, Chikkerur J, et al. Extraction of chitosan and its oligomers from shrimp shell waste, their characterization and antimicrobial effect. Veterinary World, 2017;10(2):170. doi: 10.14202/vetworld.2017.170-175.
- Toan NV. Improved chitin and chitosan production from black tiger shrimp shells using salicylic acid pretreatment. The Open Biomaterials Journal, 2011;3(1). doi: 10.2174/1876502501103010001.
- Kandra P, Challa MM, Jyothi HKP. Efficient use of shrimp waste: present and future trends. Applied Microbiology and Biotechnology, 2012;93(1):17-29. doi: 10.1007/s00253-011-3651-2.
- Yadav M, Goswami P, Paritosh K, Kumar M, Pareek N, Vivekanand V. Seafood waste: A source for preparation of commercially employable chitin/chitosan materials. Bioresources and Bioprocessing, 2019;6(1):8. doi: 10.1186/s40643-019-0243-y.
- Hayes M, Carney B, Slater J, Brück W. Mining marine shellfish wastes for bioactive molecules: Chitin and chitosan ndash; Part A: extraction methods. Biotechnology Journal: Healthcare Nutrition Technology, 2008;3(7):871-7. doi: 10.1002/biot.200700197.
- Rao MS, Munoz J, Stevens WF. Critical factors in chitin production by fermentation of shrimp biowaste. Applied Microbiology and Biotechnology, 2000;54(6):808-13. doi: 10.1007/s002530000449.
- Yang JK, Shih L, Tzeng YM, Wang SL. Production and purification of protease from a Bacillus subtilis that can deproteinize crustacean wastes☆. Enzyme and Microbial Technology, 2000;26(5-6):406-13. doi: 10.1016/s0141-0229(99)00164-7.
- Sini TK, Santhosh S, Mathew PT. Study on the production of chitin and chitosan from shrimp shell by using Bacillus subtilis fermentation. Carbohydrate Research, 2007;342(16):2423-9. doi: 10.1016/j.carres.2007.06.028.
- Coma V, Deschamps A, Martial‐Gros A. Bioactive packaging materials from edible chitosan polymer—antimicrobial activity assessment on dairy‐related contaminants. Journal of Food Science, 2003;68(9): 2788-92. doi: 10.1111/j.1365-2621.2003.tb05806.x.
- Jeon YJ, Park PJ, Kim SK. Antimicrobial effect of chitooligosaccharides produced by bioreactor. Carbohydrate Polymers, 2001;44(1):71-6. doi: 10.1016/s0144-8617(00)00200-9.
- Dutta PK, Tripathi S, Mehrotra GK, Dutta J. Perspectives for chitosan based antimicrobial films in food applications. Food Chemistry, 2009;114(4):1173-82. doi: 10.1016/j.foodchem.2008.11.047.
- Benhabiles MS, Salah R, Lounici H, Drouiche N, Goosen MF, Mameri N. Antibacterial activity of chitin, chitosan and its oligomers prepared from shrimp shell waste. Food hydrocolloids. 2012 Oct 1;29(1):48-56. doi: 10.1016/j.foodhyd.2012.02.013.
- Sahariah P, Masson M. Antimicrobial chitosan and chitosan derivatives: a review of the structure–activity relationship. Biomacromolecules. 2017 Nov 13;18(11):3846-68. doi: 10.1021/acs.biomac.7b01058.
- Goy RC, Morais ST, Assis OB. Evaluation of the antimicrobial activity of chitosan and its quaternized derivative on E. coli and S. aureus growth. Revista Brasileira de Farmacognosia. 2016 Feb;26(1):122-7. doi: 10.1016/j.bjp.2015.09.010.
- Xing K, Zhu X, Peng X, Qin S. Chitosan antimicrobial and eliciting properties for pest control in agriculture: a review. Agronomy for Sustainable Development, 2015;35(2):569-88. doi: 10.1007/s13593-014-0252-3.
- Katiyar D, Hemantaranjan A, Singh B, Bhanu AN. A future perspective in crop protection: chitosan and its oligosaccharides. Advances in Plants & Agriculture Research, 2014;1(1):1-8. doi: 10.15406/apar.2014.01.00006.
- Park H, Choi B, Hu J, Lee M. Injectable chitosan hyaluronic acid hydrogels for cartilage tissue engineering. Acta Biomaterialia, 2013;9(1):4779-86.
- He P, Davis SS, Illum L. In vitro evaluation of the mucoadhesive properties of chitosan microspheres. International Journal of Pharmaceutics, 1998;166(1):75-88.
- Sogias IA, Williams AC, Khutoryanskiy VV. Why is chitosan mucoadhesive?. Biomacromolecules, 2008;9(7):1837-42.
- Bhise KS, Dhumal RS, Paradkar AR, Kadam SS. Effect of drying methods on swelling, erosion and drug release from chitosan–naproxen sodium complexes. Aaps Pharmscitech, 2008;9(1):1-12.
- Bernkop-Schnürch A, Dünnhaupt S. Chitosan-based drug delivery systems. European Journal of Pharmaceutics and Biopharmaceutics, 2012;81(3):463-9.
- Tiyaboonchai W. Chitosan nanoparticles: a promising system for drug delivery. Naresuan University Journal: Science and Technology, 2013;11(3):51-66.
- Nagpal K, Singh SK, Mishra DN. Chitosan nanoparticles: a promising system in novel drug delivery. Chemical and Pharmaceutical Bulletin, 2010;58(11):1423-30. doi: 10.1248/cpb.58.1423.
- Kumar A, Vimal A, Kumar A. Why Chitosan? From properties to perspective of mucosal drug delivery. International Journal of Biological Macromolecules. 2016;91:615-22. doi: 10.1016/j.ijbiomac.2016.05.054.
- Casettari L, Illum L. Chitosan in nasal delivery systems for therapeutic drugs. Journal of Controlled Release. 2014;190:189-200. doi: 10.1016/j.jconrel.2014.05.003.
- Gupta H, Velpandian T, Jain S. Ion-and pH-activated novel in-situ gel system for sustained ocular drug delivery. Journal of Drug Targeting, 2010;18(7):499-505.
- Mansouri S, Lavigne P, Corsi K, Benderdour M, et al. Chitosan-DNA nanoparticles as non-viral vectors in gene therapy: strategies to improve transfection efficacy. European Journal of Pharmaceutics and Biopharmaceutics, 2004;57(1):1-8. doi: 10.1016/s0939-6411(03)00155-3.
- Corsi K, Chellat F, Fernandes JC. Mesenchymal stem cells, MG63 and HEK293 transfection using chitosan-DNA nanoparticles. Biomaterials, 2003;24(7):1255-64.
- Sato T, Ishii T, Okahata Y. In vitro gene delivery mediated by chitosan. Effect of pH, serum, and molecular mass of chitosan on the transfection efficiency. Biomaterials, 2001;22(15):2075-80.
- Lin JT, Liu ZK, Zhu QL, Rong XH, et al. Redox-responsive nanocarriers for drug and gene co-delivery based on chitosan derivatives modified mesoporous silica nanoparticles. Colloids and Surfaces B: Biointerfaces, 2017;155:41-50.
- Richard I, Thibault M, De Crescenzo G, Buschmann MD, Lavertu M. Ionization behavior of chitosan and chitosan–DNA polyplexes indicate that chitosan has a similar capability to induce a proton-sponge effect as PEI. Biomacromolecules, 2013;14(6):1732-40.
- Jayakumar R, Chennazhi KP, Muzzarelli RAA, Tamura H, Nair SV, Selvamurugan N. Chitosan conjugated DNA nanoparticles in gene therapy. Carbohydrate Polymers, 2010;79(1):1-8. doi: 10.1016/j.carbpol.2009.08.026.
- Kim TH, Jin H, Kim HW, Cho MH, Cho CS. Mannosylated chitosan nanoparticle–based cytokine gene therapy suppressed cancer growth in BALB/c mice bearing CT-26 carcinoma cells. Molecular Cancer Therapeutics, 2006;5(7):1723-32.
- Dass CR, Choong PF. The use of chitosan formulations in cancer therapy. Journal of Microencapsulation, 2008;25(4):275-9. doi: 10.1080/02652040801970461.
- Zaharoff DA, Rogers CJ, Hance KW, Schlom J, Greiner JW. Chitosan solution enhances both humoral and cell-mediated immune responses to subcutaneous vaccination. Vaccine, 2007;25(11):2085-94.
- Sarwar SB, Khondokar F, Islam H, Ullah MA, et al. Assessing drug repurposing option for emerging viral diseases: concerns, solutions, and challenges for forthcoming viral battles. Journal of Advanced Biotechnology and Experimental Therapeutics. 2020. doi: 10.5455/jabet.2021.d109.
- Minami S, Suzuki H, Okamoto Y, Fujinaga T, Shigemasa Y. Chitin and chitosan activate complement via the alternative pathway. Carbohydrate Polymers, 1998;36(2-3):151-5. doi: 10.1016/s0144-8617(98)00015-0.
- Chen WR. Chitin, chitosan, and glycated chitosan regulate immune responses: the novel adjuvants for cancer vaccine. Clinical and Developmental Immunology, 2013. doi: 10.1155/2013/387023.
- Khatri K, Goyal AK, Gupta PN, Mishra N, Vyas SP. Plasmid DNA loaded chitosan nanoparticles for nasal mucosal immunization against hepatitis B. International Journal of Pharmaceutics, 2008;354(1-2):235-41. doi: 10.1016/j.ijpharm.2007.11.027.
- Jiang L, Qian F, He X, Wang F, et al. Novel chitosan derivative nanoparticles enhance the immunogenicity of a DNA vaccine encoding hepatitis B virus core antigen in mice. The Journal of Gene Medicine: A cross‐disciplinary journal for research on the science of gene transfer and its clinical applications, 2007;9(4):253-64. doi: 10.1002/jgm.1017.
- Ghendon Y, Markushin S, Akopova I, Koptiaeva I, Krivtsov G. Chitosan as an adjuvant for poliovaccine. Journal of Medical Virology, 2011;83(5):847-52. doi: 10.1002/jmv.22030.
- Castro F, Pinto ML, Almeida R, Pereira F, et al. Chitosan/poly (γ-glutamic acid) nanoparticles incorporating IFN-γ for immune response modulation in the context of colorectal cancer. Biomaterials Science, 2019;7(8):3386-403.
- Cho EJ, Rahman A, Kim SW, Baek YM, et al. Chitosan oligosaccharides inhibit adipogenesis in 3T3-L1 adipocytes. Journal of Microbiology and Biotechnology, 2008;18(1):80-7.
- Huang L, Chen J, Cao P, Pan H, et al. Anti-obese effect of glucosamine and chitosan oligosaccharide in high-fat diet-induced obese rats. Marine Drugs, 2015 May;13(5):2732-56. doi: 10.3390/md13052732.
- Amini AR, Laurencin CT, Nukavarapu SP. Bone tissue engineering: recent advances and challenges. Critical Reviews™ in Biomedical Engineering, 2012;40(5). doi: 10.1615/critrevbiomedeng.v40.i5.10.
- Lee EJ, Shin DS, Kim HE, Kim HW, et al. Membrane of hybrid chitosan–silica xerogel for guided bone regeneration. Biomaterials, 2009;30(5):743-50. doi: 10.1016/j.biomaterials.2008.10.025.
- Shin SY, Park HN, Kim KH, Lee MH, et al. Biological evaluation of chitosan nanofiber membrane for guided bone regeneration. Journal of Periodontology, 2005;76(10):1778-84. doi: 10.1902/jop.2005.76.10.1778.
- Chesnutt BM, Viano AM, Yuan Y, Yang Y, et al. Design and characterization of a novel chitosan/nanocrystalline calcium phosphate composite scaffold for bone regeneration. Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 2009;88(2):491-502. doi: 10.1002/jbm.a.31878.
- Subramanian A, Krishnan UM, Sethuraman S. Development of biomaterial scaffold for nerve tissue engineering: Biomaterial mediated neural regeneration. Journal of Biomedical Science, 2009;16(1):108. doi: 10.1186/1423-0127-16-108.
- Yamaguchi I, Itoh S, Suzuki M, Osaka A, Tanaka J. The chitosan prepared from crab tendons: II. The chitosan/apatite composites and their application to nerve regeneration. Biomaterials, 2003;24(19):3285-92. doi: 10.1016/s0142-9612(03)00163-7.
- Gu J, Hu W, Deng A, Zhao Q, Lu S, Gu X. Surgical repair of a 30 mm long human median nerve defect in the distal forearm by implantation of a chitosan–PGA nerve guidance conduit. Journal of Tissue Engineering and Regenerative Medicine, 2012;6(2):163-8. doi: 10.1002/term.407.
- Lu G, Kong L, Sheng B, Wang G, Gong Y, Zhang X. Degradation of covalently cross-linked carboxymethyl chitosan and its potential application for peripheral nerve regeneration. European Polymer Journal, 2007; 43(9):3807-18. doi: 10.1016/j.eurpolymj.2007.06.016.
- DelMonte DW, Kim T. Anatomy and physiology of the cornea. Journal of Cataract & Refractive Surgery, 2011;37(3):588-98. doi: 10.1016/j.jcrs.2010.12.037.
- Ozcelik B, Brown KD, Blencowe A, Daniell M, Stevens GW, Qiao GG. Ultrathin chitosan–poly (ethylene glycol) hydrogel films for corneal tissue engineering. Acta Biomaterialia, 2013;9(5):6594-605. doi: 10.1016/j.actbio.2013.01.020.
- Liang Y, Liu W, Han B, Yang C, et al. An in situ formed biodegradable hydrogel for reconstruction of the corneal endothelium. Colloids and Surfaces B: Biointerfaces, 2011;82(1):1-7. doi: 10.1016/j.colsurfb.2010.07.043.
- Hunt JA, Chen R, van Veen T, Bryan N. Hydrogels for tissue engineering and regenerative medicine. Journal of Materials Chemistry B, 2014;2(33):5319-38. doi: 10.1039/c4tb00775a.
- Wang H, Shi J, Wang Y, Yin Y, et al. Promotion of cardiac differentiation of brown adipose derived stem cells by chitosan hydrogel for repair after myocardial infarction. Biomaterials, 2014;35(13):3986-98. doi: 10.1016/j.biomaterials.2014.01.021.
- Lu WN, Lü SH, Wang HB, Li DX, et al. Functional improvement of infarcted heart by co-injection of embryonic stem cells with temperature-responsive chitosan hydrogel. Tissue Engineering Part A, 2008;15(6):1437-47. doi: 10.1089/ten.tea.2008.0143.
- Dastidar DG, Ghosh D. Silver Nanoparticle Decorated Chitosan Scaffold for Wound Healing and Tissue Regeneration. Macromolecules, 2018;105(Pt 1):1241-9.
- Priya SG, Jungvid H, Kumar A. Skin tissue engineering for tissue repair and regeneration. Tissue Engineering Part B: Reviews, 2008;14(1):105-18. doi: 10.1089/teb.2007.0318.
- Kashyap PL, Xiang X, Heiden P. Chitosan nanoparticle based delivery systems for sustainable agriculture. International Journal of Biological Macromolecules, 2015;77:36-51. doi: 10.1016/j.ijbiomac.2015.02.039.
- Abdel-Mawgoud AM, Tantawy AS, El-Nemr MA, Sassine YN. Growth and yield responses of strawberry plants to chitosan application. European Journal of Scientific Research, 2010;39(1):170-7.
- Katiyar D, Hemantaranjan A, Singh B. Chitosan as a promising natural compound to enhance potential physiological responses in plant: a review. Indian Journal of Plant Physiology, 2015;20(1):1-9. doi: 10.1007/s40502-015-0139-6.
- Ma L, Li Y, Yu C, Wang Y, et al. Alleviation of exogenous oligochitosan on wheat seedlings growth under salt stress. Protoplasma, 2012;249(2):393-9. doi: 10.1007/s00709-011-0290-5.
- Lian-Ju M, Yue-Ying L, Lan-Lan W, Xue-Mei L, Liu T, Bu N. Germination and physiological response of wheat (Triticum aestivum) to pre-soaking with oligochitosan. International Journal of Agriculture and Biology, 2014;16(4).
- Zeng D, Luo X. Physiological effects of chitosan coating on wheat growth and activities of protective enzyme with drought tolerance. Open Journal of Soil Science, 2012;2(03):282. doi: 10.4236/ojss.2012.23034.
- Zhang XK, Tang ZL, Zhan L. Influence of chitosan on induction rapeseed resistance. Agricultural Science in China, 2002;35(3):287-90.
- Guo W, Ye Z, Wang G, Zhao X, Yuan J, Du Y. Measurement of oligochitosan–tobacco cell interaction by fluorometric method using europium complexes as fluorescence probes. Talanta, 2009;78(3):977-82. doi: 10.1016/j.talanta.2009.01.020.
- Yin YL, Tang ZR, Sun ZH, Liu ZQ, et al. Effect of galacto-mannan-oligosaccharides or chitosan supplementation on cytoimmunity and humoral immunity in early-weaned piglets. Asian-Australasian Journal of Animal Sciences, 2008;21(5):723-31. doi: 10.5713/ajas.2008.70408.
- Swiatkiewicz S, Swiatkiewicz M, Arczewska‐Wlosek A, Jozefiak D. Chitosan and its oligosaccharide derivatives (chito‐oligosaccharides) as feed supplements in poultry and swine nutrition. Journal of Animal Physiology and Animal Nutrition, 2015;99(1):1-12. doi: 10.1111/jpn.12222.
- Coward-Kelly G, Agbogbo FK, Holtzapple MT. Lime treatment of shrimp head waste for the generation of highly digestible animal feed. Bioresource Technology, 2006;97(13):1515-20. doi: 10.1016/j.biortech.2005.06.014.
- Rajeswari A, Amalraj A, Pius A. Adsorption studies for the removal of nitrate using chitosan/PEG and chitosan/PVA polymer composites. Journal of Water Process Engineering, 2016;9:123-34. doi: 10.1016/j.jwpe.2015.12.002.
- An B, Jung KY, Zhao D, Lee SH, Choi JW. Preparation and characterization of polymeric ligand exchanger based on chitosan hydrogel for selective removal of phosphate. Reactive and Functional Polymers, 2014; 85:45-53. doi: 10.1016/j.reactfunctpolym.2014.10.003.
- Deng W, Sun R, Li X, Lu D, Yang Q, Lu K. Flora study of riparian plants on the mountain river banks of the Jiulongjiang River headstream. Plant Science Journal, 2013;31(5):467-76. doi: 10.3724/sp.j.1142.2013.50467.
- Carneiro RT, Taketa TB, Neto RJG, et al. Removal of glyphosate herbicide from water using biopolymer membranes. Journal of Environmental Management, 2015;151:353-60. doi: 10.1016/j.jenvman.2015.01.005.
- Mohanasrinivasan V, Mishra M, Paliwal JS, Singh SK, et al. Studies on heavy metal removal efficiency and antibacterial activity of chitosan prepared from shrimp shell waste. 3 Biotech, 2014;4(2):167-75. doi: 10.1007/s13205-013-0140-6.
- Je JY, Kim SK. Antioxidant activity of novel chitin derivative. Bioorganic & Medicinal Chemistry Letters, 2006;16(7):1884-7. doi: 10.1016/j.bmcl.2005.12.077.
- Dai T, Tanaka M, Huang YY, Hamblin MR. Chitosan preparations for wounds and burns: antimicrobial and wound-healing effects. Expert Review of Anti-infective Therapy, 2011;9(7):857-79. doi: 10.1586/eri.11.59.
- Vargas M, González-Martínez C. Recent patents on food applications of chitosan. Recent Patents on Food, Nutrition & Agriculture, 2010;2(2):121-8. doi: 10.2174/1876142911002020121.
- Zheng H, Wu B, Xu YB. Effect of water-soluble chitosan on flocculability of Huangqi water-extract solution. Journal of Clinical Rehabilitative Tissue Engineering Research, 2009;13(12):2273-277.
- Aider M. Chitosan application for active bio-based films production and potential in the food industry. LWT-Food Science and Technology, 2010;43(6):837-42. doi: 10.1016/j.lwt.2010.01.021.
- Priya DS, Suriyaprabha R, Yuvakkumar R, Rajendran V. Chitosan-incorporated different nanocomposite HPMC films for food preservation. Journal of Nanoparticle Research, 2014;16(2):2248. doi: 10.1007/s11051-014-2248-y.
- Wang B, Tian C, Wang L, Wang R, Fu H. Chitosan: a green carbon source for the synthesis of graphitic nanocarbon, tungsten carbide and graphitic nanocarbon/tungsten carbide composites. Nanotechnology, 2009;21(2):025606. doi: 10.1088/0957-4484/21/2/025606.
- Cheng JC, Pisano AP. Photolithographic process for integration of the biopolymer chitosan into micro/nanostructures. Journal of Microelectromechanical Systems, 2008;17(2):402-9. doi: 10.1109/jmems.2008.916325.
- Paillet M, Dufresne A. Chitin whisker reinforced thermoplastic nanocomposites. Macromolecules, 2001;34(19):6527-30. doi: 10.1021/ma002049v.
- Yamazaki S, Takegawa A, Kaneko Y, Kadokawa JI, Yamagata M, Ishikawa M. An acidic cellulose–chitin hybrid gel as novel electrolyte for an electric double layer capacitor. Electrochemistry Communications, 2009;11(1):68-70. doi: 10.1016/j.elecom.2008.10.039.
- Alishahi A, Aïder M. Applications of chitosan in the seafood industry and aquaculture: a review. Food and Bioprocess Technology, 2012;5(3):817-30. doi: 10.1007/s11947-011-0664-x.
- Cheba BA. Chitin and chitosan: marine biopolymers with unique properties and versatile applications. Global Journal of Biotechnology & Biochemistry, 2011;6(3):149-53.
- Dutta PK, Dutta J, Tripathi VS. Chitin and chitosan: Chemistry, properties and applications. 2004.
- Mourya VK, Inamdar NN. Trimethyl chitosan and its applications in drug delivery. Journal of Materials Science: Materials in Medicine, 2009;20(5):1057. doi: 10.1007/s10856-008-3659-z.
- Mourya VK, Inamdar NN, Tiwari A. Carboxymethyl chitosan and its applications. Advanced Materials Letters, 2010;1(1):11-33. doi: 10.5185/amlett.2010.3108.
- Macquarrie DJ, Hardy JJ. Applications of functionalized chitosan in catalysis. Industrial & Engineering Chemistry Research, 2005;44(23):8499-520. doi: 10.1021/ie050007v.
- Kumar MNR. A review of chitin and chitosan applications. Reactive and Functional Polymers, 2000;46(1):1-27. doi: 10.1016/s1381-5148(00)00038-9.
- Strand SP, Vårum KM, Østgaard K. Interactions between chitosans and bacterial suspensions: adsorption and flocculation. Colloids and Surfaces B: Biointerfaces, 2003;27(1):71-81. doi: 10.1016/s0927-7765(02)00043-7.
- Fierro S, del Pilar Sánchez-Saavedra M, Copalcua C. Nitrate and phosphate removal by chitosan immobilized Scenedesmus. Bioresource Technology, 2008;99(5):1274-9. doi: 10.1016/j.biortech.2007.02.043.
- Bellich B, D’Agostino I, Semeraro S, Gamini A, Cesàro A. “The good, the bad and the ugly” of chitosans. Marine Drugs, 2016;14(5):99.
- Balázs N, Sipos P. Limitations of pH-potentiometric titration for the determination of the degree of deacetylation of chitosan. Carbohydrate Research, 2007;342(1):124-30.
- Garg U, Chauhan S, Nagaich U, Jain N. Current advances in chitosan nanoparticles based drug delivery and targeting. Advanced Pharmaceutical Bulletin, 2019;9(2):195.
How to cite this article
Vancouver
Reshad RAI, Jishan TA, Chowdhury NN. Chitosan and its Broad Applications: A Brief Review. J CLIN EXP INVEST. 2021;12(4):em00779. https://doi.org/10.29333/jcei/11268
APA
Reshad, R. A. I., Jishan, T. A., & Chowdhury, N. N. (2021). Chitosan and its Broad Applications: A Brief Review. Journal of Clinical and Experimental Investigations, 12(4), em00779. https://doi.org/10.29333/jcei/11268
AMA
Reshad RAI, Jishan TA, Chowdhury NN. Chitosan and its Broad Applications: A Brief Review. J CLIN EXP INVEST. 2021;12(4), em00779. https://doi.org/10.29333/jcei/11268
Chicago
Reshad, Riyan Al Islam, Tawfiq Alam Jishan, and Nafisa Nusrat Chowdhury. "Chitosan and its Broad Applications: A Brief Review". Journal of Clinical and Experimental Investigations 2021 12 no. 4 (2021): em00779. https://doi.org/10.29333/jcei/11268
Harvard
Reshad, R. A. I., Jishan, T. A., and Chowdhury, N. N. (2021). Chitosan and its Broad Applications: A Brief Review. Journal of Clinical and Experimental Investigations, 12(4), em00779. https://doi.org/10.29333/jcei/11268
MLA
Reshad, Riyan Al Islam et al. "Chitosan and its Broad Applications: A Brief Review". Journal of Clinical and Experimental Investigations, vol. 12, no. 4, 2021, em00779. https://doi.org/10.29333/jcei/11268